Class: 9th

Subject: Computer Science

Chapter: 1

Book Exercise Complete Solved

✓ Multiple Choice Questions (Solved with Explanation)

1. What is the primary function of a system?

- a) To work independently
- ∅ b) To achieve a common goal
- c) To create new systems
- d) To provide entertainment

Explanation:

A system's main purpose is to have all its parts working together to achieve a common goal.

- 2. What is one of the fundamental concepts of any system?
- a) Its size
- **b)** Its objective
- c) Its age
- d) Its price

Explanation:

Every system is built to achieve a specific objective, which makes "objective" a core concept.

- 3. What is an example of a simple system?
- a) A human body
- b) A computer network
- **⊘** c) A thermostat regulating temperature
- d) The Internet

Explanation:

A **thermostat** is a simple system that uses a sensor to regulate temperature.

- 4. What type of environment remains unchanged unless the system provides an output?
- a) Dynamic
- **⋄** b) Static
- c) Deterministic
- d) Non-deterministic

Explanation:

A static environment does not change unless the system interacts with it.

- 5. What are the basic components of a system?
- a) Users, hardware, software
- **⋄** b) Objectives, components, environment, communication
- c) Inputs, outputs, processes
- d) Sensors, actuators, controllers

Explanation:

Systems include objectives (goals), components (parts), environment (outside factors), and communication (interaction).

- 6. What concept does the theory of systems aim to understand?
- a) Hardware design
- c) Software applications
- d) Network security

Explanation:

Systems theory studies how systems behave, interact, and evolve with time.

- 7. What role does the Operating System (OS) play in a computer?
- a) It performs calculations and executes instructions
- b) It temporarily stores data and instructions for the CPU
- \checkmark c) It receives input from interface components and decides what to do with it
- d) It provides long-term storage of data and software

Explanation:

The OS controls hardware, manages input/output, and coordinates tasks in the computer.

- 8. Which of the following describes the Von Neumann architecture's main characteristic?
- a) Separate memory for data and instructions
- b) Parallel execution of instructions
- arphi c) Single memory store for both program instructions and data
- d) Multiple CPUs for different tasks

Explanation:

Von Neumann architecture uses one memory for storing both data and instructions.

9. What is a disadvantage of the Von Neumann architecture?

- a) Complex design due to separate memory spaces
- b) Difficult to modify programs stored in memory
- **⊘** c) Bottleneck due to single memory space for instructions and data
- d) Lack of flexibility in executing instructions

Explanation:

Because both instructions and data share the **same memory and bus**, it slows down the system (bottleneck).

10. Which of the following transports data inside a computer among different components?

- a) Control Unit
- **V** b) System Bus
- c) Memory
- d) Processor

Explanation:

The System Bus transfers data between CPU, memory, and I/O devices.

Short Questions – Answers

1. Define a system. What are its basic components?

Answer:

A system is a set of interrelated components working together to achieve a specific goal.

Basic components:

- 1. **Objectives** The goal of the system.
- 2. **Components** Parts or units working together.
- 3. **Environment** External factors affecting the system.
- 4. **Communication** Interaction between components.
- 2. Differentiate between natural and artificial systems.

Answer:

Natural System

Artificial System

Occurs in nature

Created by humans

Example: Solar system, human body Example: Computer, automobile

3. Describe the main components of a computer system.

Answer:

- 1. Input Unit Takes user data (keyboard, mouse).
- 2. **Processing Unit (CPU)** Processes data (ALU + CU).
- 3. **Memory Unit** Stores data and instructions.
- 4. Output Unit Displays results (monitor, printer).
- 5. Storage Saves data permanently (hard drive, SSD).
- 4. List and describe the types of computing systems.

Answer:

- 1. **Personal Computers (PCs)** For individual use.
- 2. Embedded Systems Inside devices like microwave ovens.
- 3. Workstations Powerful PCs for professional use.
- 4. **Servers** Provide services/data to other computers.
- 5. Supercomputers Used for complex scientific tasks.
- 5. What are the main components of the Von Neumann architecture?

Answer:

- 1. Input Unit
- 2. Memory Unit
- 3. Arithmetic Logic Unit (ALU)
- 4. Control Unit (CU)
- 5. Output Unit
- 6. What is the Von Neumann computer architecture? List its key components.

Answer:

Von Neumann Architecture is a computer design model using a single memory for both

instructions and data.

Key Components:

- Input Unit
- Memory
- ALU
- Control Unit
- Output Unit
- 7. What are the four main steps in the Von Neumann architecture's instruction cycle?

Answer:

- 1. **Fetch** Get instruction from memory
- 2. **Decode** Understand the instruction
- 3. **Execute** Perform the instruction
- 4. **Store** Save the result if needed
- 8. What is the Von Neumann bottleneck?

Answer:

It is the **slowdown** that occurs because both instructions and data use the **same bus and memory**, causing a delay in execution.

9. What is a key advantage of the Von Neumann architecture?

Answer:

It uses **one memory** for both data and instructions, making the system **simpler and cheaper** to design.

10. What are the three main requirements for a computing system to function?

Answer:

- 1. **Input** Data provided by user
- 2. **Processing** Performed by CPU
- 3. Output Results shown to user

1. Define and describe the concept of a system. Explain the fundamental components, objectives, environment, and methods of communication within a system.

Answer:

A **system** is a group of **interrelated components** working together to achieve a **common goal**. Every system takes **input**, processes it, and provides **output**.

Fundamental Components of a System:

1. Objectives:

- Every system has a specific goal or purpose.
- Example: A school system's objective is to provide education.

2. Components:

These are parts that work together (input unit, CPU, memory, etc.).

3. Environment:

External factors that affect the system (like users or networks).

4. Communication:

- Interaction between components via signals or data transfer paths.
- In computers, buses are used for communication.
- 2. Differentiate between natural and artificial systems. Discuss their characteristics, functions, and purposes with relevant examples.

Answer:

Feature	Natural System	Artificial System
Created By	Nature	Humans
Examples	Solar system, human body	Computer system, car, washing machine
Purpose	Survival, balance of nature	Problem-solving, efficiency
Control	Self-regulated	Human-controlled
Change/Update	Evolves naturally	Can be updated or modified

Explanation:

- Natural systems are found in nature and work automatically.
- Artificial systems are designed by humans for specific tasks.

3. Examine the relationship between systems and different branches of science, including natural science, design science, and computer science.

Answer:

1. Natural Science:

- Studies natural systems like the ecosystem, weather system, human body, etc.
- Uses system theory to understand how these parts interact.

Example: Respiratory system works as a system of lungs, airways, and oxygen exchange.

2. Design Science:

- Involves creating artificial systems like machines, vehicles, or control systems.
- Engineers use system theory to improve performance.

Example: Traffic control system – sensors, lights, and signals work together.

3. Computer Science:

- Computers are complex systems of hardware and software.
- Uses system theory to design efficient, secure, and reliable computing models.

Example: Operating system is a software system managing hardware resources.

4. Explore the different types of computing systems such as computers, software systems, computer networks, and the internet.

Answer:

1. Computer Systems:

- Physical devices like desktop, laptop, tablets.
- Input, process, store, and output data.

2. Software Systems:

- Programs that control computers (e.g., Windows, MS Word).
- Two types:
 - System software (OS)
 - Application software (MS Word)

3. Computer Networks:

- A group of connected computers.
- Share data, files, printers (e.g., LAN, WAN).

4. Internet:

- Global network that connects millions of computers.
- Used for browsing, communication, cloud services, etc.
- 5. Describe the main characteristics of a computer as a system, including its objectives, components, and interactions among these components.

Answer:

Objective:

- Process input data into useful output.
- Perform calculations, store and retrieve information.

Main Components:

- 1. Input Unit:
 - Accepts data (keyboard, mouse).
- 2. Processing Unit (CPU):
 - Performs calculations and decisions.
- 3. Memory Unit:
 - o Temporarily stores data (RAM).
- 4. Storage Unit:
 - Permanently stores data (hard disk, SSD).
- 5. Output Unit:
 - Shows results (monitor, printer).

Interaction:

- Components interact through **system bus** (data, address, control buses).
- Example: User gives input → CPU processes → Output displayed.
- 6. Explain the Von Neumann architecture of a computer. Include a discussion on the main components, their functions, and the step-by-step process of how the architecture operates.

Answer:

Von Neumann Architecture:

Proposed by John Von Neumann in 1945. Uses a single memory for both instructions and data.

Main Components:

- 1. Input Unit: Enters data/instructions.
- 2. Memory Unit: Stores data and programs.
- 3. Control Unit (CU): Controls flow of instructions.
- 4. ALU (Arithmetic Logic Unit): Performs calculations.
- 5. Output Unit: Displays results.

Instruction Cycle:

- 1. **Fetch:** Get instruction from memory.
- 2. **Decode:** Understand the instruction.
- 3. **Execute:** Perform the operation.
- 4. **Store:** Save the result if needed.

Key Feature:

- Uses a single bus and memory (data + instructions together)
- Causes Von Neumann Bottleneck

7. Provide a detailed explanation of how a computer interacts with its environment. Include examples of user input, network communication, and power supply.

Answer:

1. User Input:

- User types using keyboard or clicks using a mouse.
- Input devices send data to CPU for processing.

2. Network Communication:

- Internet or LAN used to communicate with other devices.
- Example: Sending an email or downloading a file.

3. Power Supply:

- Converts AC power into usable DC power.
- Ensures smooth working of components.

Other Examples:

- Printer (output to environment)
- Microphone (receives sound input from environment)

8. Describe the process of retrieving and displaying a file using a computer. Provide a step-by-step explanation.

Answer:

Step-by-Step Process:

- 1. **Input:**
 - User clicks on file icon using a mouse.
- 2. Request Sent to OS:
 - OS locates the file in memory/storage.
- 3. File Loaded:
 - Data is loaded into RAM.
- 4. CPU Processes File:
 - Instructions are executed (open in software).
- 5. Output Displayed:
 - Content is shown on screen (monitor).

Explanation:

- All components (input, memory, CPU, output) work as a system.
- OS manages the complete file access process.