Algorithms and Problem Solving
Class: 11t

Subject : Computer Science and
Entrepreneurship

Chapter : 3

1. Which of the following is a characteristic of a well-defined problem?

Options:

e (a) Ambiguous goals and unclear requirements
e (b) Vague processes and inputs

e <7 (c) Clear goals, inputs, processes, and outputs
e (d) Undefined solutions

«Z Correct Answer: (c) Clear goals, inputs, processes, and outputs

| Explanation:
A well-defined problem has:

Clearly stated goals
Known inputs
Well-understood process

Expected and measurable output

Ye characteristics problem-solving ko structured aur solvable banati hain.

2. Which complexity class represents problems that can be solved efficiently by a

deterministic algorithm?

Options:

e (a)NP

(%8 CamScanner

https://v3.camscanner.com/user/download

e (c) NP-complete
¢ V()P

« Correct Answer: (d) P

_| Explanation:

Class P (Polynomial Time) includes problems that can be solved in reasonable time
using a deterministic algorithm — like searching, sorting, etc.

It’s the simplest and most efficient class of solvable problems.

3. Which of the following is true for unsolvable problems?

Options:

e (a) They can be solved in polynomial time.

e <7 (b) They cannot be solved by any algorithm.
e (c¢) They are always in NP class.
e (d) They require exponential time to solve.

/ Correct Answer: (b)

_| Explanation:
Unsolvable problems are those for which no algorithm exists to find a solution —
regardless of time. Example: the Halting Problem.

4. What does NP stand for in computational complexity?
Options:

e </ (a) Non-deterministic Polynomial time
e (b) Negative Polynomial time

e (c¢) Non-trivial Polynomial time

e (d) Numerical Polynomial time

&/ Correct Answer: ()

_| Explanation:
NP means problems that can be verified in polynomial time by a non-deterministic
algorithm, even 1f not solved 1n polynomial time.

CamScanner

https://v3.camscanner.com/user/download

5. Which of the following search algorithms is more efficient for large datasets?

Options:

e (a) Bubble Sort
e (b) Merge Sort
e (c) Selection Sort

e < (d) Quick Sort

«/ Correct Answer: (d)

1 Explanation:
Quick Sort 1s highly efficient for large datasets due to its average-case time complexity
of O(n log n) and in-place sorting.

6. In which scenario is Dynamic Programming particularly useful?

Options:

e (a) When problems do not have overlapping subproblems.
e (b) When a problem can be solved by making a sequence of local choices.

e <7 (c) When problems have overlapping subproblems and optimal
substructure.
e (d) When a problem can be divided into independent subproblems.

Z Correct Answer: (c)

| Explanation:
Dynamic Programming i1s used when:

e Subproblems repeat
e Solution to full problem depends on solutions of smaller overlapping parts
E.g., Fibonacci, Knapsack

7. Which algorithm sorts by swapping adjacent elements if they are in the wrong order?

Options:

e (a) Selection Sort
e (b) Quick Sort

e < (c) Bubble Sort
e (d) Merge Sort

CamScanner

https://v3.camscanner.com/user/download

«Z Correct Answer: (c)

| Explanation:
Bubble Sort repeatedly compares adjacent elements and swaps them if out of order. It
1s simple but not efficient.

8. What is the time complexity of Depth-First Search (DFS) in a graph?
Options:

e (a)0O(nlogn)

e (b) O(V)
e < (c)O +E)
e (d)O(n)

Z Correct Answer: (c)

| Explanation:
In DFS, each vertex (V) and each edge (E) 1s visited once. So total time complexity 1s

O(V+E).

9. Which of the following best describes the time complexity?

Options:

e (a) The amount of memory an algorithm needs to execute.

e < (b) The time taken by an algorithm to complete as a function of input size.
e (c¢) The algorithm's ability to maintain efficiency as input size grows.
e (d) The upper bound of an algorithm's space requirements.

«/ Correct Answer: (b)

| Explanation:
Time complexity measures how long an algorithm takes to run based on the size of the
input, usually expressed using Big-O notation.

10. Which of the following algorithms has a time complexity of O(n log n)?
Options:

e (a) Bubble Sort
e (b) Binary Search

CamScanner

https://v3.camscanner.com/user/download

e < (c) Merge Sort
e (d) Insertion Sort

 Correct Answer: (c) Merge Sort

Explanation:

e Merge Sort is a divide-and-conquer sorting algorithm.

o It splits the list into halves, sorts them recursively, and merges them.

o Its time complexity is O(n log n) 1n all cases (best, average, and worst).
e [It's more efficient than Bubble or Insertion Sort, which are O(n?).

Short Question

1. Differentiate between well-defined and ill-defined problems within the realm of
computational problem-solving.

Well-Defined Problem [lI-Defined Problem
Has clear goals, inputs, process & output Goals, inputs or outputs are unclear
Can be solved using algorithms Cannot be easily solved algorithmically

Example: Sorting numbers Example: Writing a poem or designing art

2. Outline the main steps involved in the Generate and Test algorithm.

Generate a possible solution.

Test whether 1t satisfies the problem's conditions.

Repeat the process until a correct solution 1s found or all options are tried.
Select the correct solution if found.

= i b =

3. Compare tractable and intractable problems in the context of computational complexity.

e Tractable Problems:
o Can be solved in polynomial time (class P).
o Efficient and feasible to compute.
o Example: Binary Search.

e Intractable Problems:

CamScanner

https://v3.camscanner.com/user/download

o Require exponential time or more to solve.
Not feasible for large input sizes.
o Example: Traveling Salesman Problem (TSP).

4. Summarize the key idea behind Greedy Algorithms.

Greedy algorithms make the locally optimal choice at each step, hoping it will lead to a
globally optimal solution.
They do not backtrack, and work best when the problem has a greedy-choice property
and optimal substructure.

Example: Activity Selection, Coin Change (greedy version)

5. Discuss the advantages of using Dynamic Programming.

e Solves complex problems efficiently by breaking them into overlapping
subproblems.

e Stores results in a table (memoization) to avoid repeated work.

e (Guarantees optimal solution for problems with:

o Optimal substructure
o Overlapping subproblems
e Example: Fibonacci, Knapsack

6. Compare the advantages of Breadth-First Search (BFS) with Depth-First Search (DFS) in
graph traversal.

BFS DFS
Explores level by level Goes deep before backtracking
Finds shortest path in unweighted graphs &/ May not find shortest path X
Uses more memory Uses less memory

Better for shortest path problems Better for searching deeper solutions

CamScanner

https://v3.camscanner.com/user/download

7. Explain the importance of breaking down a problem into smaller components in algorithmic
thinking.

e Makes complex problems easier to understand and solve.
e Encourages modular programming.

e Enables reuse of components (functions, loops).

e Helps in debugging, testing, and optimization.

o It follows the divide-and-conquer strategy.

8. Identify the key factors used to evaluate the performance of an algorithm.

1. Time Complexity:
o Measures how fast the algorithm runs with increasing input size.

2. Space Complexity:
o Measures how much memory the algorithm uses.

3. Scalability:
o How well it handles large inputs.

4. Correctness:
o Whether it always gives accurate results.

5. Efficiency:
o Balance of speed and resource use.

Long Question

1.Provide a detailed explanation of why the Halting Problem 1s considered unsolvable
and 1ts implications 1in computer science.

Ans:
The Halting Problem: Unsolvability and Implications

The Halting Problem, a fundamental result in computability theory, asserts that there
cannot exist an algorithm that can determine, given an arbitrary program and input,
whether the program will run forever (loop indefinitely) or eventually halt (stop
executing). This problem 1s considered unsolvable, and its implications have far-reaching

consequences 1n computer science.

The Problem Statement

Given a program P and input I, determine whether P will run forever or eventually halt
when executed with input L.

Proot of Unsolvability:

CamScanner

https://v3.camscanner.com/user/download

The unsolvability of the Halting Problem was first proven by Alan Turing in 1936. The
proof involves a diagonalization argument:

1. Assume, for the sake of contradiction, that there exists a halting oracle (a program) H
that can solve the Halting Problem.

2. Construct a new program P' that takes another program P as input and:
- Runs forever if H predicts P will halt on input P.
- Halts if H predicts P will run forever on input P.
3. Now, consider what happens when P' 1s given itself as input:
- If H predicts P' will halt on input P', then P' will run forever.
- If H predicts P' will run forever on input P', then P' will halt.

4. This creates a paradox, as H's prediction 1s always incorrect. Therefore, our initial
assumption that H exists must be false.

Implications
The unsolvability of the Halting Problem has significant implications:

I. Limits of Computation: The Halting Problem highlights the fundamental limits of
computation. There are problems that are inherently impossible to solve algorithmically.

2. Undecidability: Many problems in computer science are undecidable, meaning there 1s
no algorithm that can solve them. The Halting Problem 1s a classic example.

3. Verification and Testing: The Halting Problem 1implies that 1t's impossible to write a
general-purpose program verifier that can guarantee the correctness of all programs.

4. Artificial Intelligence and Automated Reasoning: The Halting Problem's unsolvability

has implications for artificial intelligence and automated reasoning, as it limits the ability
to reason about the behavior of arbitrary programs.

Practical Consequences

While the Halting Problem 1s a theoretical result, its implications have practical
consequences:

I. Program Testing: Program testing can only provide probabilistic guarantees about
correctness, not absolute guarantees.

CamScanner

https://v3.camscanner.com/user/download

2. Error Detection: Error detection tools may not be able to detect all possible errors,
especially those related to infinite loops.

3. Program Verification: Program verification techniques, such as model checking, may
not be able to verify all properties of a program.

In summary, the Halting Problem's unsolvability demonstrates the fundamental limits of
computation and has far-reaching implications for computer science, from theoretical
foundations to practical software development.

Q: Discuss the characteristics of search problems and compare the efficiency of
Linear Search and Binary Search algorithm.

o/ Characteristics of Search Problems:

Search problems are those in which we try to find a specific item (target) in a collection
of data (like an array or list).

Key characteristics of search problems:

1. Input Data:
o A list or array containing one or more elements.
2. Search Key (Target):
o The value that needs to be found in the list.
3. Search Process:
o A method or algorithm 1s used to locate the target value.
4. QOutput:
o The index or position of the target (if found), or an indication that the
target 1s not present.
5. Performance:
o Measured using time complexity (speed) and space complexity (memory
used).

«Z Comparison: Linear Search vs Binary Search

Feature Linear Search Binary Search

Repeatedly divides sorted list in

Working Checks every element one by one half

Input Works on unsorted or sorted

. Requires sorted data onl
Requirement data # d

CamScanner

https://v3.camscanner.com/user/download

Feature Linear Search Binary Search
Time Complexity O(n) — slow for large data O(log n) — tast for large data

Very simple and easy to

Simplici Slightl lex but fficient
implicity implement ightly complex but more efficien

Best Case O(1) (if target is at start) O(1) (if target is middle element)

Worst Case O(n) O(logn)

Use Case Small or unsorted datasets Large and sorted datasets

/ Example:

Linear Search:
Search for 151n [3, 8, 12, 15, 20] — Checks each element until 1t finds 15.

Binary Search:
Search for' 1o m [3, 8, 12, 15, 20] —
Middle 1s 12 — 15 1s greater — search right halt — finds 15 1n next step.

&/ Conclusion:

e Linear Search is simple and works on any type of data (sorted or unsorted), but
it's slow for large datasets.

e Binary Search is much faster but only works on sorted data.
e In practice, Binary Search is preferred for large, sorted data because of its
logarithmic time complexity, making it highly efficient.

: Discuss the nature of optimization problems and provide examples of their
applications in real-world scenarios.

<« What Are Optimization Problems?

An optimization problem is a type of problem in which we try to find the best solution
from a set of possible solutions.

In such problems, we aim to either:

CamScanner

https://v3.camscanner.com/user/download

« Maximize something (e.g., profit, speed, performance)
e Minimize something (e.g., cost, time, distance)

These problems occur when there are multiple possible answers, and we want the most
etficient or optimal one.

« Nature and Characteristics of Optimization Problems:

1. Objective Function:
o The function we want to maximize or minimize (e.g., total profit = price
X quanftity).
2. Constraints:
o Rules or limitations that the solution must follow (e.g., budget limit, time
available).

3. Feasible Solution Set:
o All the possible solutions that satisfy the constraints.

4. Optimal Solution:
o The best possible answer among all feasible solutions.

5. Complexity:
o Optimization problems can be simple (linear equations) or very complex
(NP-hard problems).

¥ Examples of Optimization Problems in Real Life:

® 1. Route Optimization:

e Problem: Find the shortest or fastest route between two places.
o Application: Google Maps, delivery apps, GPS navigation.

® 2. Resource Allocation:

e Problem: Allocate limited resources (like money, machines, time) to get

maximum output.
e Application: Project management, budgeting, manufacturing.

® 3. Scheduling:

e Problem: Schedule tasks or events to minimize time or avoid conflicts.
e Application: Exam timetables, airline flight schedules, job scheduling in CPUs.

CamScanner

https://v3.camscanner.com/user/download

® 4. Portfolio Optimization:

e Problem: Maximize return and minimize risk in financial investments.
e Application: Stock market, banking, financial planning.

® 5. Supply Chain Optimization:

e Problem: Reduce transport cost and delivery time in supply chains.
e Application: E-commerce (Amazon, Daraz), logistics companies.

&/ Conclusion:

Optimization problems are essential in computer science and real life. They help in
making better decisions, saving time, reducing costs, and improving efficiency.
From routing to scheduling to financial planning — optimization is a core part of
intelligent systems and software.

Q: Explain the process and time complexity of the Bubble Sort algorithm.

Compare it with another sorting algorithm of your choice in terms of efficiency.

&/ Bubble Sort:

Bubble Sort is a simple comparison-based sorting algorithm.
[t works by repeatedly comparing and swapping adjacent elements if they are in the
wrong order.

/ Process of Bubble Sort:

1. Start from the beginning of the list.
2. Compare each pair of adjacent elements.
3. If the first element is greater than the second, swap them.
4. Continue this process until the largest element "bubbles up" to the end.
5. Repeat the entire process for the remaining unsorted portion of the list.
6. Stop when no more swaps are needed.

@ Example:

Sort the list [5, 2, 9, 1]

CamScanner

https://v3.camscanner.com/user/download

Pass 1: [2, 5, 1,
Pass 2: (2, 1, 5, 9]
Pass 3: (1, 2, 5, 9] — Sorted

FIL] Time Complexity of Bubble Sort:

Case Comparisons/Swaps Time Complexity

Best Case No swaps needed (already sorted) O(n)

Average Case Elements in random order 0(n*)

Worst Case Elements in reverse order 0(n*)

X Disadvantages:

Very slow for large lists
Inefficient compared to modern sorting algorithms

<« Comparison with Merge Sort:

Feature Bubble Sort Merge Sort
Method Comparison and swap Divide and Conquer
Time Complexity O(n?) O(n log n)

Space Complexity 0O(1) O(n)
Stability Stable Stable

[nput Requirement Works on any input Works on any input

Efficiency Poor for large data Excellent for large datasets

When to Use Which:

Bubble Sort 1s useful for small datasets or when simplicity 1s important.
Merge Sort is preferred for large datasets due to 1ts speed and efficiency.

CamScanner

https://v3.camscanner.com/user/download

/ Conclusion:

Bubble Sort 1s a simple but inefficient sorting algorithm, especially for large inputs.
While it helps in understanding sorting concepts, modern algorithms like Merge Sort or
Quick Sort are used 1n real applications due to their better performance.

Q: Discuss the differences between time complexity and space complexity. How
do they impact the choice of an algorithm for a specific problem?

&/ 1. Introduction:

In computer science, when we analyze an algorithm, we are mainly concerned with:

e How fast it runs — Time Complexity
e How much memory it uses — Space Complexity

These two factors help us decide whether an algorithm is efficient or not for solving a
particular problem.

< 2.Time Complexity:

o Time Complexity tells us how much time an algorithm will take to complete,
depending on the size of input (n).

e It 1s usually written in Big O notation, e.g., O(n), O(n?), O(log n).

e It helps predict execution speed.

Example:

e A loop running from 1 to n — O(n)
e Nested loops from 1 to n — O(n?)

7 3. Space Complexity:

e Space Complexity tells us how much memory (RAM or storage) an algorithm
will need during execution.
e It includes:
o Input size
o Temporary variables
o Function call stacks

CamScanner

https://v3.camscanner.com/user/download

Example:

e Using an array of size n — O(n)
e A recursive function may use extra stack space — O(n)

4. Key Differences Between Time and Space Complexity:

Feature Time Complexity Space Complexity
Measures Execution time of the algorithm Memory used by the algorithm

Number of memory cells or

Unit Number of operations _

variables
Optimization Goal Minimize the number of steps Minimize memory usage
[Impact on Affects how fast the program Affects how much memory is
Performance runs needed
Example O(n), O(n?), O(log n) 0(1), O(n), O(n log n)

« 5. Impact the Choice of Algorithm:

When choosing an algorithm for a specific problem, we consider both time and space:

o If speed is more important (e.g., in real-time systems), choose algorithm with
lower time complexity.
e If memory is limited (e.g., embedded systems), prefer space-efficient
algorithms.
e Sometimes, there's a trade-off:
o You may use more space to gain faster execution (e.g., using lookup
tables).

o Or you may use less space but take more time.
Example:
e Merge Sort has O(n log n) time but O(n) space.

e Quick Sort has O(n log n) time and O(log n) space — preterred when memory 1s
tight.

CamScanner

https://v3.camscanner.com/user/download

&/ Conclusion:

Time and space complexity are essential tools in analyzing the efficiency of an algorithm.
Choosing the right algorithm depends on the specific needs of the problem: whether it
requires speed, low memory, or a balance of both.

Understanding these complexities helps developers write faster and smarter programs.

@ CamScanner

https://v3.camscanner.com/user/download

