Computational Structures

Class: 11th

Subject: Computer Science and Entrepreneurship

Chapter: 4

- 1. Which function is used to add an item at the end of the list in Python?
- a) insert()
- **b**) append() **⊘** (Correct Answer)
- c) remove()
- **d**) pop()
- **Explanation:** append() function adds an element at the end of a list. Example:

```
my_list = [1, 2]
my_list.append(3) # Result: [1, 2, 3]
```

- 2. What does the 'in' keyword do when used with a Python list?
- a) Adds an item to the list.
- b) Removes an item from the list.
- c) Checks if an item exists in the list. \checkmark (Correct Answer)
- **d)** Returns the length of the list.
- **Explanation:** The in keyword is used to **check membership** in a list. Example:

```
if 5 in [1, 2, 3, 5]: # Returns True
```

- 3. Which operation removes an item from the top of the stack?
- a) Push
- **b)** Pop **⊘** (Correct Answer)
- c) Peek
- d) Add

Explanation: pop() removes the top item from the stack. Stack uses **LIFO** (Last In, First Out).

- 4. Which operation is used to add an item to a queue?
- a) Dequeue
- b) Peek
- c) Enqueue & (Correct Answer)
- d) Remove
- Explanation: enqueue means to add an item at the end of the queue (FIFO).
- 5. Which of the following is true about the height of a tree?
- a) The height is the number of edges from the root to the deepest node \emptyset (Correct Answer)
- **b)** The height is the number of nodes from the root to the deepest node
- c) The height is the number of children of the root node
- d) The height is always equal to the number of nodes in the tree
- **Explanation:** Tree height = number of **edges** on the longest path from the root to a leaf.
- 6. For which scenario would a graph data structure be most appropriate?
- a) Managing a to-do list
- b) Modeling a line of customers in a store
- c) Representing connections in a social network \checkmark (Correct Answer)
- d) All of the above
- **Explanation:** Graphs are ideal for showing **relationships**, such as friends/followers in social networks.

Short Question

1. Explain how the extend() function works in Python lists. Provide an example.

Answer:

The extend() function is used to **add multiple elements** from one list to the end of another list. It **extends** the original list by appending elements from another iterable (like list, tuple).

Example:

```
list1 = [1, 2, 3]
list2 = [4, 5]
list1.extend(list2)
print(list1) # Output: [1, 2, 3, 4, 5]
```

extend() changes the original list by adding each item from the second list.

2. Explain the potential issues which could arise when two variables reference the same list in a program? Provide an example.

Answer:

If two variables refer to the **same list**, any change made through one variable will **also affect** the other, because they point to the **same memory location**.

Example:

This can cause bugs if the programmer **does not intend** both variables to share the same data.

3. Define a stack and explain the Last-In, First-Out (LIFO) principle.

Answer:

A stack is a linear data structure where the last element added is the first to be removed. This is called the LIFO (Last In, First Out) principle.

Real-life example: Stack of plates – the last plate placed on top is the first one to be taken off.

Python example:

```
stack = []
stack.append('A')  # push
stack.append('B')
stack.pop()  # removes 'B'
```

4. Differentiate between the Enqueue and Dequeue operations of a queue.

Answer:

Enqueue Adds an element to the queue At the rear

Dequeue Removes an element from queue From the **front**

Queue follows FIFO (First In, First Out) rule.

5. Name two basic operations performed on a stack.

Answer:

- 1. **Push** Add an element to the top of the stack.
- 2. **Pop** Remove the top element from the stack.

Doptional: Peek is also used to view the top element without removing it.

6. What is the difference between enqueue () and dequeue ()?

Answer:

- enqueue() is used to insert an element at the end of a queue.
- dequeue() is used to remove an element from the front of the queue.

Example:

```
queue = []
queue.append('A')  # Enqueue
queue.pop(0)  # Dequeue
```

Long Question

Discuss the dynamic size property of lists in Python. How does this property make lists more flexible?

Answer:

In Python, lists are dynamic in size, which means you can add or remove items

anytime during program execution. You don't need to define a fixed size like in arrays in some other languages (e.g., C or Java).

Advantages:

- Flexible memory usage
- Easy to grow/shrink based on need
- Supports many built-in functions like append(), remove(), extend(), etc.

Example:

```
my_list = []  # Empty list
my_list.append(10)  # Add element
my_list.extend([20, 30]) # Add multiple elements
print(my_list)  # Output: [10, 20, 30]
```

This dynamic nature makes Python lists ideal for managing data that changes in size.

8. Explain the operations on stack with real-life example and Python code.

Answer:

A stack is a data structure that follows LIFO (Last In, First Out) rule.

Basic Operations:

- 1. **Push** Add item to the top of stack
- 2. **Pop** Remove item from top of stack
- 3. **Peek** View top item without removing

Real-Life Example:

Imagine a stack of plates:

• The last plate placed on top is the first to be taken out.

Python Code Example:

```
# Push operation
stack.append("Book1")
stack.append("Book2")
print(stack) # Output: ['Book1', 'Book2']

# Pop operation
stack.pop() # Removes 'Book2'
print(stack) # Output: ['Book1']
```



```
# Peek operation
print(stack[-1]) # Output: 'Book1'
```

Exact is useful in undo-redo systems, browser history, etc.

9. Write a simple program to implement a queue (insertion and deletion).

Answer:

```
# Queue using list
queue = []

# Enqueue (Insert)
queue.append("Person1")
queue.append("Person2")
print("Queue after enqueuing:", queue)

# Dequeue (Remove)
first = queue.pop(0)
print("Dequeued:", first)
print("Queue after dequeuing:", queue)
```

Output:

```
Queue after enqueuing: ['Person1', 'Person2']
Dequeued: Person1
Queue after dequeuing: ['Person2']
```

Queue follows FIFO (First In, First Out).

10. Define Tree and explain its properties

Answer:

A tree is a hierarchical data structure that consists of nodes connected by edges.

Properties of a Tree:

- **Root:** The topmost node of the tree
- Parent and Child: Nodes connected downward from the root
- Leaf Node: A node with no children
- **Height:** Number of edges from root to the deepest leaf
- Subtree: Any node with its children can be considered a tree

• No cycles: Trees cannot have loops like graphs

Example Tree:

Trees are used in file systems, databases, decision making, etc.

11. What is a graph? Explain differences between directed and undirected graphs.

Answer:

A graph is a collection of **nodes** (vertices) and edges where the edges connect pairs of nodes.

Types of Graphs:

Feature	Directed Graph	Undirected Graph
Edge direction	One-way $(A \rightarrow B)$	Two-way (A — B)
Representation	Arrows between nodes	Simple lines between nodes
Example use-case	Social media followers	Friendship or road maps

Example:

Directed Graph:

 $A \rightarrow B$ (A follows B)

• Undirected Graph:

A — B (A and B are friends)

■ Graphs are used in networking, maps, social networks, and more.

