Data Analytics

Class: 11th

Subject: Computer Science and

Entrepreneurship

Chapter: 5

- 1. Which of the following is an example of a basic statistical model?
- a) Linear Regression
- b) Neural Networks
- c) Decision Trees
- d) Support Vector Machines
- **⊘** Correct Answer: a) Linear Regression
- **Explanation:** Linear Regression is the most basic statistical model used to find the relationship between independent and dependent variables.
- 2. What does experimental design in data science involve?
- a) Creating visualizations
- b) Collecting and analyzing data systematically
- c) Writing code for machine learning
- **d**) Building databases
- **♥ Correct Answer: b) Collecting and analyzing data systematically**
- **Explanation:** Experimental design focuses on structured methods to collect and analyze data for valid and reliable conclusions.
- 3. Which tool is commonly used for creating data visualizations?
- a) MS Excel
- **b**) Python (Matplotlib)
- c) Tableau

- d) All of the above
- **⊘** Correct Answer: d) All of the above
- **Explanation:** All listed tools are widely used for creating charts, graphs, and other data visualizations.

4. What does the slope in a linear regression model represent?

- a) The intercept of the model
- b) The change in the dependent variable for a unit change in the independent variable
- c) The error term
- d) The mean of the data
- \checkmark Correct Answer: b) The change in the dependent variable for a unit change in the independent variable
- **Explanation:** In linear regression, the slope shows how much the outcome (Y) changes when the input (X) increases by one unit.

5. Which of the following is an example of a real-world application of statistical models?

- a) Predicting house prices
- b) Creating social media posts
- c) Designing websites
- **d)** Writing essays
- **Correct Answer:** a) Predicting house prices
- **Explanation:** Statistical models like regression are commonly used in real estate to predict property prices based on various factors.

6. Which of the following is NOT a benefit of data visualization?

- a) Identifying trends and patterns
- b) Communicating insights effectively
- c) Making data more complex
- d) Summarizing large datasets
- **⊘** Correct Answer: c) Making data more complex
- **Explanation:** Data visualization simplifies complex data, it doesn't make it more complex.

7. What is the primary goal of K-Means Clustering?

- a) To classify data into predefined categories
- b) To group data into clusters based on similarity
- c) To predict continuous outcomes
- d) To reduce the dimensionality of data
- **⊘** Correct Answer: b) To group data into clusters based on similarity
- **Explanation:** K-Means is an unsupervised algorithm that groups similar data points into clusters.

8. In K-Means Clustering, what does the "K" represent?

- a) The number of features in the dataset
- b) The number of clusters to be formed
- c) The number of iterations required for convergence
- d) The number of data points in the dataset
- **⊘** Correct Answer: b) The number of clusters to be formed
- **Explanation:** "K" indicates how many clusters you want to divide the data into when using K-Means.

Short Question

1. What is the importance of building statistical models in real-world applications?

Answer:

Statistical models are important because they help in:

- Understanding patterns in real-world data
- Making predictions about future events
- Making decisions based on evidence and data
- **Reducing guesswork** by providing mathematical insights
- **Example:** Predicting house prices, customer behavior, or disease spread using data.
- 2. Name one basic statistical model used for predicting outcomes and explain its purpose.

Answer:

Model Name: Linear Regression

Purpose: It is used to predict a numerical (continuous) outcome based on one or more

input (independent) variables.

Example: Predicting a student's exam score based on the number of hours studied.

3. List two types of data visualizations and describe when you would use each.

Answer:

- 1. Bar Chart
 - Use: To compare categories or groups
 - Example: Comparing sales of different products.
- 2. Line Graph
 - o **Use:** To show trends or changes over time
 - Example: Tracking monthly temperatures throughout the year.
- 4. How does visualizing data help in understanding descriptive statistics?

Answer:

Visualizing data makes descriptive statistics easier to understand by:

- Showing patterns and trends clearly
- Helping to compare data quickly
- Making large amounts of data simpler and more visual
- Supporting better decision-making

Example: A histogram can help you see how data is distributed (like if most students scored between 70-80%).

Long Question

1. Explain the role and importance of statistical models in solving real-world problems.

Answer:

Statistical models play a crucial role in understanding, analyzing, and predicting real-world situations using data. These models help in making decisions based on mathematical relationships instead of guesswork.

Importance and Role:

• Prediction: Models like linear regression help forecast future outcomes. Example: Predicting house prices based on location and size.

• **Decision-Making:** Helps businesses and governments make informed decisions.

Example: Banks use models to predict loan defaults.

- Pattern Recognition: Identifies trends or patterns in large datasets. Example: Recognizing customer buying behavior.
- Saving Time and Cost: Models automate analysis, reducing manual work.
- Wide Applications: Used in healthcare, marketing, agriculture, education, and more.
- 2. Describe the steps involved in building a basic statistical model (e.g., linear regression). Include details on data collection, model training, and evaluation.

Answer:

Building a basic statistical model like linear regression involves several steps:

Step 1: Data Collection

- Gather relevant data from real-world sources such as surveys, sensors, files, or databases.
- Ensure data quality: clean, complete, and relevant.
- **■** Example: Collecting data of students hours studied and their exam scores.

Step 2: Data Preparation

- Remove missing or incorrect values.
- Convert data into suitable format for modeling.

Step 3: Model Selection

- Choose the right statistical model in this case, Linear Regression.
- Linear regression finds the best-fit line between dependent and independent variables.

Step 4: Model Training

- Use software like Python, Excel, or R to train the model on the data.
- The model learns the relationship between input (X) and output (Y).
- Example: Model learns how "hours studied" affects "exam score".

Step 5: Model Evaluation

- Evaluate the model using metrics like:
 - R-squared
 - Mean Squared Error (MSE)
- Helps check how accurate and reliable the model is.

Step 6: Prediction

- Once trained, use the model to make future predictions.
- Example: Predict score if a student studies for 5 hours.

3. Discuss the types of data visualizations and their uses.

Answer:

Data visualizations are graphical representations of data that help people understand patterns, trends, and relationships.

Common Types and Their Uses:

1. Bar Chart

- **Use:** To compare categories or groups.
- **Example:** Comparing sales of different products.

2. Line Graph

- **Use:** To show changes or trends over time.
- **Example:** Monthly temperature or stock price trends.

3. Pie Chart

- **Use:** To show percentage or proportional data.
- **Example:** Market share of different brands.

4. Histogram

- **Use:** To show the distribution of numerical data.
- **Example:** Frequency of students' scores in a test.

5. Scatter Plot

- **Use:** To find relationships between two variables.
- **Example:** Relationship between height and weight.

Benefits of Data Visualization:

- Makes large data easy to understand
- Highlights key patterns and outliers
- Helps in decision-making quickly
- Communicates insights effectively

4. Explain Data Collection Method

Answer:

Data collection is the process of **gathering information** from different sources to use for analysis, research, or decision-making. It is the **first and most important step** in data science or statistical modeling.

♥ Types of Data Collection Methods:

1. Primary Data Collection

Data is collected directly from the original source.

♦ Methods:

- Surveys & Questionnaires Asking people directly through forms
- Interviews Talking one-on-one with people to get detailed data
- Experiments Collecting data by performing tests
- Observation Watching and recording behavior in real-time
- **Example:** Asking students how many hours they study daily.

2. Secondary Data Collection

Data is collected from **existing sources**, which were originally collected by someone else.

♦ Sources:

- Websites and online databases
- Government reports
- Research papers or books
- Company records
- **Example:** Using population data from Pakistan Bureau of Statistics.

♦ Steps in Data Collection Process:

- 1. **Define the Purpose:** Why is data being collected?
- 2. Choose the Method: Survey, interview, observation, etc.
- 3. Collect the Data: Gather accurate and complete data.
- 4. Check for Errors: Review and clean data before analysis.
- 5. Store Securely: Keep the data safe and organized for future use.

⊘ Importance of Data Collection:

- Provides accurate input for analysis
- Helps in making informed decisions
- Forms the foundation of statistical models
- Ensures results are reliable and valid

Conclusion:

Without proper data collection, any analysis or model can be **misleading or useless**. Therefore, choosing the **right method** and collecting **correct and complete data** is essential for solving real-world problems.

5. Discuss the Concept of Measure of Tendency with Example

Answer:

The **measure of central tendency** is a statistical concept that refers to the **center** or **typical value** of a set of data. It shows where most values in a dataset **cluster** or are **centered**.

♥ Types of Measures of Tendency:

There are three main types:

1. Mean (Average)

The sum of all values divided by the number of values.

Formula:

Mean=Sum of all values/Number of values

Example:

If a student scored 70, 80, and 90 in three subjects:

Mean=70+80+90/3=240/3=80

2. Median

The middle value when data is arranged in ascending or descending order.

Example:

For the data: $10, 20, 30 \rightarrow \text{Median} = 20$ If even number of values: Data = $10, 20, 30, 40 \rightarrow \text{Median} = (20 + 30) \div 2 = 25$

3. Mode

The value that appears **most frequently** in the dataset.

Example:

Data: $5, 7, 7, 9, 10 \rightarrow Mode = 7$ (because 7 appears twice)

⊘ Importance of Measures of Tendency:

- Helps in summarizing large data into a single value
- Useful in comparing datasets
- Helps in making decisions in business, education, and research
- Indicates central behavior of data

Conclusion:

Measures of central tendency are useful tools in statistics that help describe **what is typical or average** in a set of data. Depending on the data type, we use **mean**, **median**, or **mode** to understand the **central value**.

