Class: 11<sup>th</sup>

Subject: Physics

Chapter: 1 Measurements

(11th Class Physics - Punjab Board)

**Multiple Choice Questions with Explanations** 

## 1.1 The purpose of study and discoveries in Physics is:

- (a) the probing of interstellar spaces
- (b) the betterment of mankind  $\checkmark$
- (c) the development of destructive technology in warfare
- (d) development in aesthetics for the world

**Explanation:** Physics ka asal maqsad insani zindagi ko behter banana hai — technology, health, communication, transport etc. sab is ka result hain.

# 1.2 The length of a steel pipe is in between 0.7 m to 0.8 m. Identify from the following, the appropriate instrument to be used for an accuracy of 0.001 m.

- (a) A micrometer screw gauge
- (b) A metre rule
- (c) A ten metres measuring tape
- (d) A Vernier Callipers ✓

**Explanation:** Vernier Callipers ki accuracy 0.01 cm (yaani 0.0001 m) tak hoti hai, is liye steel pipe ki measurement mein yeh best instrument hai.

# 1.3 The diameter of a steel ball is measured using a Vernier callipers and its reading is shown in the figure. What is the diameter of the steel ball?

- (a) 1.30 cm
- **(b)** 1.39 cm ✓
- (c) 1.40 cm
- (d) 1.31 cm

**Explanation:** Agar main scale 1.3 cm aur vernier scale ka 9th division match kar raha ho to:  $1.3 + (9 \times 0.01) = 1.39$  cm

#### 1.4

A micrometer screw gauge is used to measure the diameter of a rod. One complete turn of the thimble = 0.50 mm and 50 divisions on the circular scale.

- (a) 3.67 mm
- **(b)** 3.17 mm  $\checkmark$
- (c) 4.77 mm
- (d) 4.20 mm

## **Explanation:**

Pitch = 0.50 mm

LC (Least Count) = 0.50 mm / 50 = 0.01 mm

Assume main scale reading = 3.0 mm, and circular scale = 17

 $\rightarrow$  Diameter = 3.0 + (17 × 0.01) = **3.17 mm** 

## 1.5

The number of significant figures of a measurement are defined as:

- (a) they reflect the accuracy of the observation in a measurement
- (b) they are the figures which are reasonably rounded off
- (c) they are the accurately known digits and the first doubtful digit of a measurement ✓
- (d) meaningless data

## **Explanation:**

Significant figures include all known digits plus the first uncertain (doubtful) digit.

#### 1.6

The number of significant figures in the measured mass 2500.0 kg is:

(a) two

- (b) three
- (c) four
- (d) five  $\checkmark$

## **Explanation:**

All non-zero digits and trailing zeroes after decimal are significant. So:

 $2500.0 \rightarrow 5$  significant figures

## 1.7

The sum 12 kg + 2.02 kg + 5.1 kg, to appropriate precision:

- (a) 19 kg
- **(b)** 19.0 kg
- (c) 19.1 kg  $\checkmark$
- (**d**) 19.12 kg

# $\varnothing$ Explanation:

Least precise number (12 kg) has no decimal, but 5.1 has 1, and 2.02 has 2 decimal places. Final answer should match the **least decimal places** (i.e., 1).

 $12 + 2.02 + 5.1 = 19.12 \rightarrow$  round to 19.1

### 1.8

Subtraction: 0.126 - 0.97268 = ? (to correct significant figures)

- (a) 0.15
- **(b)** 0.153
- **(c)** 0.1533 ✓
- **(d)** 0.15332

## **Explanation:**

0.126 has 3 decimal places, so answer should be up to 3 decimal places  $\rightarrow$  0.1533

#### 1.9

Product:  $2.8723 \times 1.6 = ?$  (Significant figures)

- (a) 4.59568
- **(b)** 4.595
- (c) 4.59 ✓
- **(d)** 4.6

```
Explanation:
```

 $2.8723 \rightarrow 5$  sig. figs

 $1.6 \rightarrow 2$  sig. figs

So answer must be in 2 significant figures  $\rightarrow$  4.59

# 1.10

Division:  $45.2 \div 6.0 = ?$ 

- (a)  $7.5 \checkmark$
- **(b)** 7.53
- **(c)** 7.533
- **(d)** 7.5333

# $\varnothing$ Explanation:

45.2 (3 sig. figs), 6.0 (2 sig. figs)  $\rightarrow$  final result = 2 sig. figs  $\rightarrow$  7.5

## 1.11

Multiplication: 24.4 m/s  $\times$  100 m  $\times$  2.0 s

- (a) 4880 m
- **(b)** 4900 m ✓
- (c)  $4.88 \times 10^3$  m
- (d)  $4.9 \times 10^3$  m

# $\varnothing$ Explanation:

Significant figures:

24.4 (3), 100 (1), 2.0 (2)  $\rightarrow$  answer must have **1 sig. fig** (least)

 $\rightarrow$  4880  $\rightarrow$  rounded to **4900** (1 sig. fig)

# 1.12

The ratio of the dimensions of force and energy is:

- (a) T
- **(b)**  $T^{-1}$
- **(c)** L
- (d)  $L^{-1} \checkmark$

## **Explanation:**

Force=MLT-2, Energy=ML2T-2 So ratio = Force / Energy = MLT-2 / ML2T-2 =1 / L= L-1

### 1.13

Which pair does **not** have identical dimensions?

- (a) Work and torque
- (b) Angular momentum and Planck's constant
- (c) Moment of inertia and moment of force ✓
- (d) Impulse and momentum

## **Explanation:**

Moment of inertia: ML<sup>2</sup>

Moment of force (Torque): M L<sup>2</sup> T<sup>-2</sup>  $\rightarrow$  different dimensions

The following figures are of the same Vernier Calipers.

- Fig (1) shows the reading when the jaws are closed
- Fig (2) shows the reading when a solid cylinder is placed between the jaws
- the length of the cylinder?

## **Options:**

- (a) 3.26 cm
- **(b)** 3.30 cm
- (c)  $3.34 \text{ cm} \checkmark$
- (d) 4.20 cm

## 1.15

The least count of an instrument determines:

- (a) Precision of a measurement ✓
- (b) Accuracy of a measurement
- (c) Fractional uncertainty
- (d) Percentage uncertainty

# $\varnothing$ Explanation:

Least Count shows the smallest measurable quantity. It reflects how precise the instrument is.

1.16

A measuring tape has a smallest division of 0.02 cm. The appropriate reading using this tape is:

- (a) 80.504 cm
- **(b)** 80.6 cm
- (c) 80.65 cm ✓
- (d) 80.7 cm

## **Explanation:**

A measuring tape with 0.02 cm smallest division can report values up to 2 decimal places, so **80.65 cm** is valid.

#### Short Answer Questions

# Q1.1 What are base units and derived units? Give examples.

#### **Answer:**

- **Base units** are the fundamental units for physical quantities (e.g., metre, kilogram, second).
- **Derived units** are obtained by combining base units (e.g., Newton =  $kg \cdot m/s^2$ , Joule =  $kg \cdot m^2/s^2$ )

# Q1.2 How many significant figures should be retained?

- (i) Multiplication/Division: Keep the least number of significant figures among all values.
- (ii) Addition/Subtraction: Keep the result with the least decimal places.

## Q1.3 How is the Vernier scale related to the main scale? What is L.C.?

#### **Answer:**

- Vernier scale is a small sliding scale used for precise measurements.
- L.C. (Least Count) is the smallest value that can be measured using the Vernier.

LC=Value of one main scale division - Value of one vernier scale division

#### Q1.4 Write in scientific notation:

- (a)  $143.7 \rightarrow 1.437 \times 10^{2}$
- (b)  $2126.4 \times 10^7 \rightarrow 2.1264 \times 10^{10}$

# Q1.5 Use correct prefixes:

- (a)  $580 \times 10^3 \text{ g} = 580 \text{ kg}$
- (b)  $0.454 \times 10^4 \text{ s} = 4.54 \times 10^3 \text{ s} = 4.54 \text{ ks}$

# Q1.6 What are the dimensions of Kinetic Energy (½mv²)?

#### **Answer:**

 $[K.E.]=1/2 [M][L2][T^-2]=[ML2T^-2]$ 

# Q1.7 How many significant figures?

- (i)  $37 \text{ km} \rightarrow 2$
- (ii)  $0.032953 \text{ m} \rightarrow 5$
- (iii)  $7.50034 \text{ cm} \rightarrow 6$
- (iv)  $200.0 \text{ m} \rightarrow 4$

## Q1.8 Dimensions of:

- (i) Planck's constant hhh  $\rightarrow [M L^2 T^{-1}]$
- (ii) Angular velocity  $\rightarrow [T^{-1}]$



# Q1.1 Why do we use both kilogram and mole for amount of substance?

### **Answer:**

- Kilogram is used to measure mass.
- Mole is used to count entities (atoms/molecules).
  Both describe amount but in different contexts.

# Q1.2 Three students measured a rod using scale (LC = 1 mm):

- (i) 0.423501 m **X**
- (ii) 0.42 m ✓
- (iii) 0.424 m ✓

#### **Conclusion:**

Only (ii) and (iii) are correct measurements according to the scale's precision. (i) is invalid because it records more digits than the instrument can measure.

Explanation: First value is over-precise (more than instrument's capacity).

## Q1.3 Why is kilogram (not gram) the base unit of mass?

#### **Answer:**

The kilogram (kg) is the base unit of mass in the International System of Units (SI) instead of the gram because:

#### 1. **♦ Historical Reason:**

The SI system was established based on the **metric system**, in which the **kilogram** was originally defined using a physical prototype (the International Prototype Kilogram or IPK) in 1889.

#### 2. **♦ Practical Usage:**

The **kilogram** is more suitable for measuring **everyday quantities** of mass (like human weight, commercial goods, scientific experiments).

Using gram as the base unit would result in **very large numbers** for most real-world masses.

#### 3. **♦ Scientific Standardization:**

In 2019, the kilogram was redefined based on **fundamental constants** (Planck's constant), not a physical object — reinforcing it as the **most stable and precise** unit for mass.

#### **Conclusion:**

Although **gram** is a smaller and widely used unit, the **kilogram** is adopted as the **base unit** due to **historical**, **practical**, **and scientific** reasons.

# Q1.4 If $P = Q \times R$ , and both Q & R have dimensions of velocity ([LT<sup>-1</sup>]),

#### Answer:

**♦** Step 1: Find dimensions of P

Given:

[Q]=[LT-1], [R]=[LT-1]  
[P]=[Q]·[R]=[LT-1]·[LT-1]=[L
$$^2$$
T $^-$ 2]

♦ Step 2: Find SI units of P

From dimensions:

[L2T-2]=Unit of Energy or Work

 $\forall$  SI Unit of P = Joule (J)

Where:

1 Joule=1 kg\cdotpm2/s^2

# ♦ Step 3: If Q and R had different dimensions

Yes, even if Q and R had different dimensions, we can **still determine the dimensions of P** by multiplying their dimensions algebraically.

© Example:

If

[Q]=[M], [R]=[LT^-2]
$$\Rightarrow$$
[P]=[MLT^-2

Which are the dimensions of force (Unit: Newton)

1.5

Q: What is the least count of a clock if it has...

- (a) Hour, minute, and seconds hand?
- **Table 1** Least Count = 1 second

Because the **seconds hand** moves every 1 second — that's the **smallest measurable time**.

(b) Hour and minute hand only?

**☐ Least Count = 1 minute** 

Since there is **no seconds hand**, the smallest observable time is when the **minute hand** moves, i.e., **1 minute**.

1.6

Q: How can diameter of a round pencil be measured using a meter rule with same accuracy as Vernier Calipers?

Answer:

Place the pencil between two blocks (like fingers) and mark the edges. Measure distance between marks using a meter rule **3–4 times** and take **average**. Accuracy increases by repetition.

1.7

Q: How would readings differ if screw gauge is used instead of Vernier Calipers to measure thickness of glass plate?

**Answer:** 

Screw gauge has higher accuracy (LC = 0.01 mm) than Vernier Calipers (LC = 0.1 mm). So, readings would be **more precise** with screw gauge.

• Reading with error:

If measured value is 3.34 cm and error is  $\pm 0.02$  cm,

 $\rightarrow$  Corrected value = 3.34 ± 0.02 cm

1.8

Q: Screw gauge has 50 divisions. If thimble is rotated 10 times, and spindle moves 5 mm. What is pitch and LC?

Answer:

- **Pitch** = 5 mm / 10 = 0.5 mm
- LC = 0.5 mm / 50 = 0.01 mm

1.9

Q: Screw gauge shows zero error (positive), and 2nd circular division matches datum line. Answer:

- Zero error = +0.02 mm
- Suppose observed reading = 4.57 mm
  - $\rightarrow$  Correct reading = 4.57 mm 0.02 mm = 4.55 mm

## 1.10

Q: What is meant by a dimensionless quantity? Give one example. Answer:

A physical quantity having no units or dimensions is called dimensionless.

© Example: Angle (radian), refractive index

## 1.11

Q: A sheet of paper folded 3 times is measured by screw gauge. Total thickness = 0.36 mm Answer:

- No. of sheets =  $2^3 = 8$  layers
  - $\rightarrow$  Thickness of one sheet = 0.36 mm / 8 = 0.045 mm

#### 1.12

Round off to 3 significant figures & convert to scientific notation:

- (a)  $0.02055 \rightarrow 2.06 \times 10^{-2}$
- (b)  $4656.5 \rightarrow 4.66 \times 10^3$

# Comprehensive Questions

## Q1.1

What is meant by uncertainty in a measurement? How is uncertainty in digital instruments indicated?

#### **Answer:**

#### **Uncertainty in Measurement:**

Uncertainty in a measurement refers to the doubt or margin of error associated with the result. It represents the range of values within which the true value is likely to lie.

### **Types of Uncertainty:**

- 1. Random Uncertainty: Due to unpredictable fluctuations in measurements.
- 2. Systematic Uncertainty: Due to instrumental or methodological errors.

## **Uncertainty in Digital Instruments:**

Digital instruments typically display a finite number of digits. The uncertainty is often indicated by:

- 1. Last Digit: The last digit displayed is usually considered uncertain.
- 2. Resolution: The smallest change in measurement that can be detected.

For example, a digital multimeter displaying 4.52 V might have an uncertainty of ±0.01 V.

## **Reporting Uncertainty:**

Measurements are often reported with uncertainty, e.g.,  $4.52~V \pm 0.01~V$ .

# Q1.2

# Differentiate between precision and accuracy:

| Feature    | Precision                       | Accuracy                     |  |
|------------|---------------------------------|------------------------------|--|
| Definition | Reproducibility of measurements | Closeness to true value      |  |
| Example    | Same wrong value repeatedly     | One correct value, even once |  |

## Q1.3

(a) What is meant by significant figures? Write two reasons for using them in measurements. How to find the uncertainty in a timing experiment such as the time period of a simple pendulum?

# **♦** Significant Figures?

Significant figures are the digits in a measurement that are reliably known plus the first doubtful digit.

© Example:

- $5.63 \rightarrow 3$  significant figures
- $0.0204 \rightarrow 3$  significant figures (leading zeros not counted)

# **♦** Two Reasons to Use Significant Figures:

- 1.  $\checkmark$  They reflect the **precision** of a measuring instrument.
- 2. Whelp in reducing and expressing uncertainty clearly in scientific results.

# ♦ Uncertainty in Timing Experiment (e.g., Time Period of Pendulum):

To reduce uncertainty in measuring the time period, we:

- Measure the time of multiple oscillations (e.g., 20 swings)
- Then divide by the number of oscillations

T=Total Time / Number of Oscillations

• This averages out reaction errors and gives a more precise value

## **Uncertainty formula:**

ΔT=Least Count/Number of Oscillations

# Comprehensive Question (Part B)

Q1.3 b): The mass of a solid cylinder is 12.85 g, length is 3.35 cm, and diameter is 1.25 cm. Find the density of the material, expressing the uncertainty in the density.

# **♦ Step 1: Convert Units to SI**

- Mass m=12.85 g=0.01285 kg
- Length h=3.35 cm=0.0335 m

• Diameter  $d=1.25 \text{ cm} \Rightarrow r=0.625 \text{ cm} = 0.00625 \text{ m}$ 

# **♦ Step 2: Find Volume of Cylinder**

 $V=\pi r^2h=3.14\times(0.00625)^2\times0.0335\approx4.11\times10-6$  m3

# **♦ Step 3: Find Density**

p=m/V=0.01285/4.11×10−6≈3127 kg/m3

# **♦ Step 4: Expressing Uncertainty (Approximate):**

Suppose instrument uncertainties:

- $\Delta m = \pm 0.01 \text{ g} = 1 \times 10 5 \text{ kg}$
- $\Delta h = \pm 0.01 \text{ cm} = 1 \times 10 4 \text{ m}$
- $\Delta r = \pm 0.01 \text{ cm} = 1 \times 10 4 \text{ m}$

Use relative uncertainties:

$$\begin{split} &\Delta\rho\,/\,\rho{\approx}\Delta m\,/\,m{+}2(\Delta r\,/\,r){+}\Delta h\,/\,h\\ &\Delta\rho\,/\,3127{\approx}1{\times}10^{\circ}{-}5\,/\,0.01285\,+\,2{\times}1{\times}10^{\circ}{-}4\,/\,0.00625\,+\,1{\times}10^{\circ}{-}4\,/\,0.0335\\ &\Delta\rho\,/\,3127{\approx}0.00078{+}0.032{+}0.00299{\approx}0.036{\Rightarrow}\Delta\rho{\approx}0.036{\times}3127{\approx}113\ kg/m3 \end{split}$$

# Final Answer:

 $\rho = (3127 \pm 113) \text{ kg/m}$ 

### 1.15

Q: Explain with examples the writing of physical quantities into their dimensions. Write its two benefits.

Answer:

**Dimensional formula** represents a physical quantity using base quantities:

• Force = Mass × Acceleration

[F]=[M][L][T-2]

**⊘** Benefits:



- 1. Check the correctness of physical equations (homogeneity).
- 2. Helps in unit conversion and deriving relations.

## 1.16

# Q: Check the homogeneity of the relation:

 $v = \sqrt{T/m}$ 

#### Where:

- v = speed of wave
- $T = tension (N = kg \cdot m/s^2)$
- m = mass per unit length (kg/m)

# **Step 1: Dimensions of RHS**

$$T/m=[MLT^{-2}]/[ML^{-1}]=[L^{2}T^{-2}]$$
  
 $\sqrt{T/m}=[LT^{-1}]$ 

# **Step 2: Dimensions of LHS (v):**

$$[v]=[LT-1]$$

 $\checkmark$  Both sides are equal  $\Rightarrow$  Equation is dimensionally homogeneous.