Class: 11th

Subject: Physics

Chapter: 2

Force and Motion

Multiple Choice Questions (MCQs)

Choose the correct answer:

2.1 The angle at which dot product becomes equal to cross product is:

- (a) 65°
- **(b)** 45° ✓
- (c) 76°
- (**d**) 30°

\varnothing Explanation:

Dot product: $A \cdot B = AB\cos$ Cross product: $A \times B = AB\sin$ If $\cos\theta = \sin\theta$, then $= \sin\theta = 45\circ$

2.2 The projectile gains its maximum height at an angle of:

- (a) 0°
- **(b)** 45° ✓
- (c) 60°
- (**d**) 90°

\varnothing Explanation:

Maximum height is part of maximum range condition, which is at 45°.

2.3 The scalar product of two vectors is maximum if they	are:
--	------

- (a) perpendicular
- **(b)** parallel ✓
- (c) at 30°
- (d) at 45°

Explanation:

Scalar (dot) product is maximum when $\cos\theta=1$ i.e., $\theta=0$ ° vectors are **parallel**.

2.4 The range of projectile is same for two angles which are mutually:

- (a) perpendicular
- (b) supplementary
- (c) complementary ✓
- **(d)** 270°

Explanation:

Range $R=v2\sin(2\theta)/g$

So, if $\theta 1 + \theta 2 = 90$ ° then $\sin(2\theta 1) = \sin(2\theta 2) \rightarrow$ **complementary** angles.

2.5 The acceleration at the top of a trajectory of projectile is:

- (a) maximum
- (b) minimum
- (c) zero
- (d) g \checkmark

Explanation:

Acceleration due to gravity acts constantly downward with magnitude ggg, even at the top.

2.6 SI unit of impulse is:

- (a) $kg \cdot m/s^2$
- **(b)** N·m

- (c) N·s ✓
- (d) $N \cdot m/s$

\varnothing Explanation:

Impulse = Force \times Time = N \times s = N \cdot s

2.7 The rate of change of momentum is:

- (a) force \checkmark
- (b) impulse
- (c) acceleration
- (d) power

\varnothing Explanation:

F=dp / dt⇒Force is the rate of change of momentum

2.8 As rocket moves upward during its journey, then its acceleration goes on:

- (a) increasing ✓
- **(b)** decreasing
- (c) remains same
- (d) moves with uniform velocity

Explanation:

As fuel burns, mass decreases while thrust remains, so acceleration increases.

2.9 Elastic collision involves:

- (a) loss of energy
- (b) gain of energy
- (c) no gain, no loss of energy ✓
- (d) no relation between energy and elastic collision

Explanation:

In an elastic collision, both momentum and kinetic energy are conserved.

Short Answer Questions

2.1 – State Right Hand Rule for Two Vectors (Vector Product)

Answer:

The **Right-Hand Rule** is used to determine the **direction of the vector product** (cross product) of two vectors.

- Point the fingers of your right hand in the direction of the first vector (A).
- Rotate them toward the second vector (B) through the smallest angle.
- Your thumb will point in the direction of the resultant vector $(\mathbf{A} \times \mathbf{B})$.

 $*\Box$ Cross product is **perpendicular** to both vectors.

2.2 - Define Impulse and Show How It is Related to Momentum

★ Answer:

Impulse:

Impulse is the product of force and the time interval during which the force acts.

Impulse=F·∆t

Relation with Momentum:

According to Newton's second law:

 $F=\Delta p / \Delta t \Rightarrow F \cdot \Delta t = \Delta p$

∜ So,

Impulse=Change in Momentum

2.3 – Differentiate Between Elastic and Inelastic Collision

* Answer:

Property	Elastic Collision	Inelastic Collision
Kinetic Energy	Conserved	Not Conserved
Momentum	Conserved	Conserved
Example	Billiard balls	Car crash, clay hitting wall

Post-Collision Motion Objects may rebound Objects may stick together

2.4 – Show That Rate of Change in Momentum is Equal to Force & State Newton's 2nd Law

★ Answer:

From Newton's Second Law:

 $F=dpdtF = \frac{dp}{dt}F=dtdp$

Where:

- F = Force
- p=mv = Momentum

This means:

 \checkmark Force is equal to the rate of change of momentum.

Newton's Second Law (in terms of momentum):

"The force acting on a body is equal to the rate of change of momentum produced in the body."

2.5 – State Law of Conservation of Linear Momentum and Condition for Its Validity

Answer:

Law of Conservation of Linear Momentum:

"The total linear momentum of an isolated system remains **constant**, if no **external force** acts on it."

Initial Momentum=Final Momentum

\checkmark Condition:

This law holds only when the system is **closed and isolated** — i.e., **no external force** is acting on the system.

2.6 – Show that Range of Projectile is Maximum at 45°

Answer:

The formula for range:

 $R=u^2\sin(2\theta)/g$

 \checkmark Range depends on $\sin(2\theta)$ which is maximum when $\sin(2\theta)=1$

This happens when:

2θ=90°⇒θ=45°

Q Therefore, the range of a projectile is maximum at an angle of 45°.

2.7 – Find Time of Flight to Reach Maximum Height

★ Answer:

Time to reach maximum height is half of total time of flight:

 $T=usin\theta / g$

Where:

- u = initial velocity
- θ = angle of projection
- g = acceleration due to gravity

 \checkmark Time to reach max height = T=usin θ / g

2.8 – Max Range is 800 m, Find Height at 60°

★ Given:

- Rmax=800 m
- Angle θ =60°
- **♦** Use the formula:

 $H=Rmax/4.tan\theta$

H=800/4 ·tan(60∘)=200 · $\sqrt{3}$ ≈346.4 m

$ \checkmark $	Height	attained	≈ 346.4	m
----------------	--------	----------	----------------	---

Constructed Response Questions

2.1 – Why Does a Hunter Miss the Bird When Aiming Directly at It?

★ Answer:

Because of **gravity**, the bullet or projectile follows a **curved path**, while the bird may **fly away** or stay still.

✓ So, aiming directly results in the bullet falling below the target. That's why hunters aim slightly above the bird.

2.2 – Why Does a Person Fall Safely on Sand, but Not on Concrete?

★ Answer:

Sand increases the **time of impact**, reducing the **rate of momentum change**, hence reducing **force** (as per impulse-momentum theorem).

 $F=\Delta p / \Delta tF$

✓ Sand gives more time, so less force is felt.

2.3 - Conditions for Birds to Fly in Air

Answer:

Birds fly due to Newton's 3rd law:

- They **push air downward** with their wings.
- The air gives an equal and opposite upward lift.
- The lift force must balance the bird's weight for steady flight.

2.4 - Describe Situations with v = 0, a = 0, etc.

★ Answer:

1. v=0 but $a\neq 0$

A ball at the top of its projectile path — velocity momentarily zero, but gravity is acting.

2. a=0, but $v\neq 0$

A vehicle moving at **constant speed** in a straight line — no acceleration.

3. **v**⊥**a**:

In uniform circular motion, velocity is tangential and acceleration (centripetal) is toward the center \rightarrow perpendicular.

2.5 – Effect of Air Resistance on Range of Projectile

★ Answer:

Air resistance:

- Reduces the horizontal component of velocity.
- Decreases the total range.
- Makes trajectory asymmetric descent is steeper.

Actual range is less than theoretical range (without air).

Comprehensive Questions

2.1 – Define and Explain Scalar Product. Write Its Characteristics

★ Answer:

Scalar Product (Dot Product):

The scalar (or dot) product of two vectors **A** and **B** is given by:

 $A \cdot B = AB\cos\theta$

Where:

- A and B are magnitudes of vectors
- θ is the angle between them
- Result is a scalar quantity

\$ Characteristics:

- 1. $A \cdot B = B \cdot A \rightarrow Commutative$
- 2. A·B=0 if vectors are perpendicular
- 3. $A \cdot A = |A|^2$
- 4. Result is **maximum** when $\theta=0$ °

2.2 – Define and Explain Vector Product. Characteristics of Vector Product

★ Answer:

Vector Product (Cross Product):

 $A \times B = Absin\theta n^{\wedge}$

Where n' is a unit vector perpendicular to both A and B (right-hand rule).

\$ Characteristics:

- 1. $A \times B = -B \times A \rightarrow Anti-commutative$
- $2. A \times A = 0$
- 3. Result is a vector perpendicular to plane of A and B
- 4. Maximum when angle is 90.

2.3 – Derive Three Equations of Motion (Graphical Method)

Answer:

Using velocity-time graph:

1. First Equation:

v=u+at

2. Second Equation:

Displacement = Area under v–t graph

s=ut+ 1 / 2at^2

3. Third Equation:

Eliminate time ttt:

V^2=u^2+2as

2.4 – What is Projectile Motion? Explain.

★ Answer:

Projectile Motion:

The curved path followed by an object thrown near Earth's surface under **gravity** alone is called **projectile motion**.

- Horizontal velocity is constant
- Vertical motion is like free fall
- Path is a parabola

2.5 – Derive Expressions for Projectile Motion

(i) Time of Flight

 $T=2usin\theta / g$

(ii) Maximum Height

 $H=u^2sin^2\theta / 2g$

(iii) Range

 $R=u^2\sin(2\theta)/g$

2.6 – Explain Elastic Collision in 1D & Relative Velocities

Answer:

Elastic Collision (1D):

Both momentum and kinetic energy are conserved.

\$ Condition:

m1u1+m2u2=m1v1+m2v2(momentum)

1/2 m1u1^2+1/2 m2u2^2=1/2 m1v1^2+1/2 m2v2^2(KE

⊘ Relative Velocity Before = After (Reversed):

u1-u2=-(v1-v2)

2.7 – Derive Momentum & Energy Conservation in 2D Collision

Answer:

Let two particles collide with masses m1m_1m1 and m2m_2m2, and split motion into x and y components:

♦ Momentum in x-direction:

m1u1x+m2u2x=m1v1x+m2v2x

♦ Momentum in y-direction:

m1u1y+m2u2y=m1v1y+m2v2y

♦ Kinetic Energy (Elastic Collision Only):

1 / 2m1u1^2+1 / 2m2u2^2=1 / 2m1v1^2+1 / 2m2v2^2

2.8 – Explain Inelastic Collision in Two Dimensions

Answer:

- In inelastic collisions, momentum is conserved, but kinetic energy is not.
- Bodies may stick together or move separately with energy loss (sound, heat, deformation).
- **♦** Apply conservation of momentum in both axes:
 - m1u1x+m2u2x=(m1+m2)vx
 - m1u1y+m2u2y=(m1+m2)vy

