

LHS = a(b+c)Which shows the rational number in the form of $\frac{p}{2}$. RHS = ab + ac $= \left(\frac{2}{3}\right) \left(\frac{3}{2}\right) + \left(\frac{2}{3}\right) \left(\frac{5}{3}\right)$ $=\frac{2}{3}\left(\frac{3}{2}+\frac{5}{3}\right)$ x = 0.93Let (ii) ...(i) x = 0.939393 $=\frac{2}{3}\left(\frac{9+10}{6}\right)$ $\frac{10}{9}$ Multiply by 100 on both sides 100x = 100 (0.939393...) $=\frac{2}{3}\left(\frac{19}{6}\right)$ 100x= 93.939393... :..(ii) 9+10 Subtracting (i) from (ii) 9 $=\frac{19}{9}$ 100x - x = 93.939393... - 0.939393... $=\frac{19}{9}$ 99x = 93 $x = \frac{93}{99}$ which is a rational number. Hence proved (ii) Right distributive property Example 4 : Insert two rational numbers between 2 and 3. (a+b)c = ac + bcSolution: There are infinite rational numbers between 2 and 3. LHS = (a+b)cRHS = ac + bcWe find any two of them $= \left(\frac{2}{3}\right) \left(\frac{5}{3}\right) + \left(\frac{3}{2}\right) \left(\frac{5}{3}\right)$ For this, find the average of 2 and 3 as $\frac{2+3}{2} = \frac{5}{2}$ $=\frac{10}{9}+\frac{15}{6}$ = So, $\frac{3}{-}$ is a rational number between 2 and 3,to find another $=\frac{20+45}{18}$ $\left(\frac{13}{6}\right)\left(\frac{5}{3}\right)$ rational number between 2and 3 we will again find average of - $=\frac{65}{18}$ $=\frac{65}{18}$ and 3. Hence, it is verified that (a+b)c = ac+bcExample 6: Identify the property that justifies the statement . If a > 13 then a + 2 > 15(i) Hence two rational numbers between 2 and 3 are $\frac{5}{2}$ and $\frac{11}{4}$ If 3<9 and 6 < 12 then 9<21 (ii) If 7> 4 and 5 > 3 then 35>12 (iii) Example 5: If $a = \frac{2}{3}$, $b = \frac{3}{2}$, $c = \frac{3}{3}$ then verify the distributive If -5 <-4 ⇒20 > 16 (iv) Solution: property over addition. (i) a>13 Solution: (i) Left distributive property Add 2 on both sides a(b+c) = ab + ac

	EXERCISE 1.	1
	\Rightarrow 20 > 16	
	$-5 \times -4 > -4 \times -4$	
Multiply on bo	th sides by-4	
(iv)	As -5 < - 4	
	⇒ 35 > 12	
	\Rightarrow 7 × 5 > 4 × 3	
(iii)	7 < 4 and $5 > 3$	
	9 < 21	
	\Rightarrow 3+6<9+12	
(ii)	As 3 < 9 and 6 < 12	
	a+2>15	
	a+2>13+2	,

Identify each of the following as a rational or irrational numbers:

	2.353535	(ii)	0.6	(iii)	2.236067
(iv)	√7	(v)	е	(vi)	π
(vii)	5+√11	(viii)	√3 +	√13	
(ix)	$\frac{15}{4}$	(x)	(2	√2)(2+	√2)

Let's go through each number and determine whether it is rational or irrational.

(i) 2.353535

Solution: This is a repeating decimal (2.35), which can be written as a fraction. Therefore, it is a rational number. (ii) $0.\overline{6}$

Solution: This is a repeating decimal $(0, \overline{6})$, which can be written as a fraction. Therefore, it is a **rational number**. (iii) 2.236067...

Solution: This is the decimal expansion of $\sqrt{5}$, which is non-repeating and non-terminating. Therefore, it is an irrational number.

(iv) √7

Solution: The square root of 7 is a non-repeating and nonterminating decimal. Therefore, it is an irrational number (v) e

Solution: e = 2.71828182845904...

The mathematical constant e is a non-repeating and nonterminating decimal. Therefore, it is an irrational number. (vi) π

Solution: $\pi = 3.1415926535897932...$

The mathematical constant π is a non-repeating and nonterminating decimal. Therefore, it is an irrational number. (vii) $5 + \sqrt{11}$

Solution: Since $\sqrt{11}$ is irrational and adding a rational number (5) to it results in an irrational number, this is an irrational number.

(viii) $\sqrt{3} + \sqrt{13}$

Solution: Both $\sqrt{3}$ and $\sqrt{13}$ are irrational, and their sum is also irrational. Therefore, it is an irrational number. (ix) $\frac{15}{4}$

Solution: This is a fraction, which is a rational number. Therefore, it is a rational number.

(x) $(2-\sqrt{2})(2+\sqrt{2})$

Solution: This expression simplifies to $2^2 - (\sqrt{2})^2 = 4 - 2 = 2$, which is a rational number. Therefore, it is a **rational number**.

2. Represent the following numbers on number line: (i) $\sqrt{2}$ (ii) $\sqrt{3}$ (iii) $4\frac{1}{3}$ (iv) $-2\frac{1}{7}$ (v) $\frac{5}{8}$ (vi) $2\frac{3}{4}$ (i)

 $\sqrt{2}$ **Solution:** To represent $\sqrt{2}$ on a number line, we can follow a similar approach to the one outlined in your example:

- Approximate Value: $\sqrt{2} \approx 1.414$, which is a value slightly greater than 1.
- Constructing the Number Line: .
 - Draw a line and mark points for 0 and 1.
 - Measure the distance from 0 to 1 as 1 unit.
 - Construct a right-angle triangle with one leg as 1 unit (the segment from 0 to 1) and the other leg also 1 unit.
 - o Use the Pythagorean theorem to find the hypotenuse:

$$(mOB)^2 = (mOA)^2 + (mAB)^2 = 1^2 + 1^2 = 2 \Rightarrow mOB = \sqrt{2}.$$

- Draw the arc with radius $\sqrt{2}$ from the point 0 (which is the origin) on the number line.
- Locating $\sqrt{2}$ on the Number Line: The point P where the arc intersects the line represents the value $\sqrt{2}$.

Thus, $\sqrt{2}$ is located at approximately 1.414 units from 0, slightly more than 1 but less than 2, on the number line.

Solution: Let LL' be a number line.

Draw O 1 AB on LL'.

Cut the line segment \overline{OB} equal to 2 units. OAB is right angled Δ .

$$\therefore AB = \sqrt{OB^2 - OA^2} = \sqrt{4 - 1} = \sqrt{3}$$

Cut the number line OP segment equal to AB.

(iii)

Solution:

• Estimate the value: $\frac{13}{2}$ = 4.333 ..., which is slightly more than 4 but less than

Draw a number line: Mark the points 0, 1, 2, 3, 4, and 5 on the number line.

Locate 4¹/₋:

- Since $4\frac{1}{2}$ is just slightly more than 4, you will mark a point between 4 and 5.
- o Divide the segment between 4 and 5 into 3 equal parts, as the denominator is 3.
- $0 \quad 4\frac{1}{2}$ will be at the first mark after 4.

Thus, he point representing $4\frac{1}{3}$ will be just past 4 on the number line, about one-third of the way toward 5.

-2= (iv) Solution: $-2\frac{1}{7} = -\frac{15}{7}$. • Estimate the value: $-\frac{15}{7} \approx -2.142857$, which is slightly more than -2 but less than -3. Draw a number line: Mark the points -3, -2, -1, 0, 1, 2, 3 on the number line. • Locate $-2\frac{1}{2}$: • Since $-2\frac{1}{7}$ is slightly more than -2, it will be located just past -2 but before -3. • Divide the segment between -2 and -3 into 7 equal parts (since the denominator is 7). $-2\frac{1}{7}$ will be at the first mark after -2, which is 0 one-seventh of the way toward -3. Thus, the point representing $-2\frac{1}{7}$ will be just past -2 on the number line. (v) Solution: Estimate the value: 1. $\frac{5}{2} = 0.625.$ Draw a number line: 2. Mark the points 0, 1 on the number line. Divide the segment between 0 and 1 into 8 equal parts: 3. Since the denominator is 8, divide the space between 0 and 1 into 8 equal parts.

4. Locate $\frac{5}{8}$: Since $\frac{5}{8} = 0.625$, it will be 5 parts out of 8 between 0 and 1.

Thus, the point representing $\frac{5}{8}$ will be located after the 5th division between 0 and 1 on the number line.

(vi) $2\frac{3}{4}$

Solution: $2\frac{3}{2}$ can be written as the improper fraction:

$$2\frac{3}{4} = \frac{8}{4} + \frac{3}{4} = \frac{11}{4}.$$

2.75.

• Draw a number line:

So, $2^{\frac{3}{-}} =$

Mark the integers 0, 1, 2, and 3 on the number line.

- Divide the segment between 2 and 3 into 4 equal parts: Since the denominator is 4, divide the space between 2 and 3 into 4 equal parts.
- Locate $2\frac{3}{4}$:

 $2\frac{3}{4} = 2.75$ is 3 parts out of 4 between 2 and 3.

Thus, the point representing $2\frac{3}{4}$ will be located after the 3rd division between 2 and 3 on the number line.

Express the following as a rational number $\frac{p}{2}$ where 3. p and q are integers and $q \neq 0$ 0.21 0.37 0.4 (iii) (ii) (i) $x = 0.\bar{4}$ Sol: (i) Let: This means: x = 0.4444...Since the repeating part ("4") has one digit, multiply x by 10: $10x = 4.4444 \dots$ $10x - x = 4.4444 \dots - 0.4444 \dots$ 9x = 4x =For 0. 37: (ii) Let x = 0.37. Sol: This means: r = 0.373737...Since the repeating part ("37") has two digits, multiply x by 100: $100x = 37.373737 \dots$ $100x - x = 37.373737 \dots - 0.373737 \dots$ 99x = 3737 $x = \overline{99}$ For 0. 21: (iii) Let x = 0.21. Sol: This means: $x = 0.212121 \dots$ Since the repeating part ("21") has two digits, multiply x by 100: $100x = 21.212121 \dots$ $100x - x = 21.212121 \dots - 0.212121 \dots$ 99x = 21

Name the property used in the following. 1 (a+4)+b=a+(4+b)(i) $\sqrt{2} + \sqrt{3} = \sqrt{3} + \sqrt{2}$ (ii) (iii) x-x=0(iv) a(b+c) = ab + ac16 + 0 = 16(v) (vi) $100 \times 1 = 100$ (vii) $4 \times (5 \times 8) = (4 \times 5) \times 8$ (viii) ab = baHere are the properties used in each equation: (a+4)+b=a+(4+b)(i) Ans. Property: Associative Property of Addition $\sqrt{2} + \sqrt{3} = \sqrt{3} + \sqrt{2}$ (ii) Property: Commutative Property of Addition Ans. (iii) x-x=0Property: Additive Inverse Property Ans. a(b+c) = ab + ac(iv) Ans. Property: Distributive Property of Multiplication over Addition (v) 16 + 0 = 16Ans. Property: Additive Identity Property (vi) $100 \times 1 = 100$ Property: Multiplicative Identity Property Ans. $4 \times (5 \times 8) = (4 \times 5) \times 8$ (vii) Property: Associative Property of Multiplication Ans. (viii) ab = baAns. Property: Commutative Property of Multiplication 5. Name the property used in the following: (i) $-3 < -1 \Rightarrow 0 < 2$ If a < b then $\frac{1}{-} >$ (ii) (iii) If a < b Then a + c < b + cIf ac < bc and c > 0 then a < b(iv) If ac < bc and c < 0 then a > b(v)

	1977-7 1013	
	(vi) Either $a > b$ or $a = b$ or $a < b$	$=\frac{15}{24}\times\frac{1}{2}=\frac{15}{48}=\frac{5}{16}$
(i)	$-3 < -1 \Rightarrow < 2$ Property: Additive Property	Thus, $\frac{5}{16}$ and $\frac{7}{24}$ are two rational numbers between $\frac{1}{2}$ and $\frac{1}{4}$.
(ii)	If $a < b$, then $\frac{1}{a} > \frac{1}{b}$	
	Property: Reciprocal Property	(ii) Two rational numbers between 3 and 4.
(iii)	If $a < b$, then $a + c < b + c$ Property: Additive Property of Inequalities	Average of 3 and 4 $= \frac{3+4}{2} = \frac{7}{2}$
(iv)	$c \rightarrow c$ he and $c \rightarrow 0$, then $a < b$	Average of $\frac{7}{2}$ and $4 = \left(\frac{7}{2} + 4\right) \div 2$
	If $ac < bc$ and $c > 0$, then Property: Multiplicative Property of Inequalities If $ac < bc$ and $c < 0$, then $a > b$	Average of $\frac{1}{2}$ and $4 = \left(\frac{1}{2} + 4\right) \div 2$
(V)	Property: Multiplicative Property of Inequalities	$=\left(\frac{7+8}{2}\right)\times\frac{1}{2}$
vi)	Either $a > b$, or $a = b$, or $a < b$	$\left(\frac{1}{2}\right)^{2}$
	Property: Trichotomy Property	_ 15 1 15
5.	Insert two rational numbers between	$=\frac{15}{2}\times\frac{1}{2}=\frac{15}{4}$
	(i) $\frac{1}{3}$ and $\frac{1}{4}$ (ii) 3 and 4	Thus, $\frac{7}{2}$ and $\frac{15}{4}$ are two rational numbers between 3 and 4.
	(iii) $\frac{3}{5}$ and $\frac{4}{5}$ $\partial I = 0$	
oluti	· 이제에 사망하는 것은 것을 수 있는 것을 수 있는 것을 하는 것을 하는 것을 가지 않는 것을 가지 않는 것을 수 있는 것을 가지 않는 것을 수 있는 것을 수 있는 것을 하는 것을 가지 않는 것을 수 있는 것을 수 있는 것을 수 있는 것을 수 있다. 것을 가지 않는 것을 수 있는 것을 수 있다. 것을 수 있는 것을 수 있는 것을 수 있다. 것을 수 있는 것을 수 있는 것을 수 있는 것을 수 있는 것을 수 있다. 것을 수 있는 것을 수 있는 것을 수 있다. 것을 수 있는 것을 수 있는 것을 수 있다. 것을 수 있는 것을 수 있는 것을 수 있다. 것을 수 있는 것을 수 있는 것을 수 있다. 것을 수 있는 것을 수 있는 것을 수 있다. 것을 수 있는 것을 수 있는 것을 수 있다. 것을 수 있는 것을 수 있다. 것을 수 있는 것을 수 있는 것을 수 있다. 것을 수 있는 것을 수 있는 것을 수 있다. 것을 수 있는 것을 수 있는 것을 수 있다. 것을 수 있는 것을 수 있는 것을 수 있다. 것을 수 있는 것을 수 있다. 것을 수 있는 것을 수 있는 것을 수 있다. 것을 수 있는 것을 수 있는 것을 수 있는 것을 수 있다. 것을 수 있는 것을 수 있는 것을 수 있다. 것을 수 있는 것을 수 있는 것을 수 있다. 것을 수 있는 것을 수 있다. 것을 수 있는 것을 수 있다. 것을 수 있다. 것을 수 있는 것을 수 있다. 것을 것을 수 있다. 것을 것을 것을 것을 수 있다. 것을 것을 수 있다. 것을 것을 것을 것을 것을 수 있다. 것을 수 있다. 것을 것을 것을 것을 것을 수 있다. 것을 것을 수 있다. 것을 것을 것 같이 같이 것을 것을 것 같다. 것을 것 같다. 것을 것 같이 하는 것을 것 같이 않다. 것을 것 같이 않다. 것을 것 같이 같이 같이 없다. 것을 것 같이 않다. 것 같이 것 같이 없다. 것 같이 없다. 것 같이 없다. 것 같이 않다. 것 같이 없다. 것 같이 없다. 것 같이 않다. 것 같이 않다. 것 같이 없다. 것 같이 않다. 것 않다. 것 같이 없다. 것 같이 없다. 않다. 않다. 않다. 않다. 않다. 않다. 않다. 않다. 않다. 않	(iii) Two rational numbers between $\frac{3}{5}$ and $\frac{4}{5}$.
i)	Two rational numbers between $\frac{1}{3}$ and $\frac{1}{4}$:	일을 다 있는 것은 것을 하는 것을 알려요. 이 것은 것은 것은 것은 것을 가지 않는 것을 해야 한다. 것을 하는 것을 수가 있다. 이 가지 않는 것을 수가 있
.,	Average of $\frac{1}{3}$ and $\frac{1}{4} = \left(\frac{1}{3} + \frac{1}{4}\right) \div 2$	Average of $\frac{3}{5}$ and $\frac{4}{5} = \left(\frac{3}{5} + \frac{4}{5}\right) \div 2$
		(3+4) 1
	$= \left(\frac{4+3}{2}\right) \times \frac{1}{2} \times \frac{1}{2$	$=\left(\frac{3+4}{5}\right)\times\frac{1}{2}$
		7 1 7
	🔮 👋 Name the property quark in the fall wine 🗧	$=\frac{7}{5}\times\frac{1}{2}=\frac{7}{10}$
	12 2 24	A_{1}
	Average of $\frac{1}{2}$ and $\frac{7}{7}$ (1.7)	Average of $\frac{7}{10}$ and $\frac{4}{5} = \left(\frac{7}{10} + \frac{4}{5}\right) \div 2$
	Average of $\frac{1}{3}$ and $\frac{7}{24} = \left(\frac{1}{3} + \frac{7}{24}\right) \div 2$	(7+8) 1
	$=\left(\frac{8+7}{24}\right)\times\frac{1}{2}$	$=\left(\frac{7+8}{10}\right)\times\frac{1}{2}$
	$=\left(\frac{\delta+1}{\lambda}\right)_{\chi}$	

.

1. 1. 1.

(ii)
$$\sqrt[3]{27x^6y^9z^3}$$

 $=(27x^6y^9z^3)^{\frac{1}{3}}$ $\therefore \sqrt[4]{a} = a^{\frac{1}{n}}$
 $=(27)^{\frac{1}{3}}(x^6)^{\frac{1}{3}}(y^9)^{\frac{1}{3}}(z^3)^{\frac{1}{3}}$ $\therefore (ab)^m = a^mb^m$
 $=(3^3)^{\frac{1}{3}}(x^6)^{\frac{1}{3}}(y^9)^{\frac{1}{3}}(z^3)^{\frac{1}{3}}$ $\therefore (ab)^m = a^mb^m$
 $=3^{3x\frac{1}{3}} \cdot x^{6x\frac{1}{3}} \cdot y^{9x\frac{1}{3}} \cdot z^{3x\frac{1}{3}}$
 $=3x^2y^3z$
(iii) $(64)^{-\frac{4}{3}}$
 $=\frac{1}{(64)^{\frac{4}{3}}} = \frac{1}{(4)^{\frac{4}{3}}} = \frac{1}{4^{3x\frac{4}{3}}}$
 $=\frac{1}{4^4} = \frac{1}{256}$
Example 8: Rationalize the denominator of (i) $\frac{3}{\sqrt{5}+\sqrt{2}}$
(ii) $\frac{3}{\sqrt{5}-\sqrt{3}}$
Solution (i):

?

.

.

Jution (i):

$$\frac{3}{\sqrt{5} + \sqrt{2}} = \frac{3}{\sqrt{5} + \sqrt{2}} \times \frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} - \sqrt{2}}$$

$$= \frac{3(\sqrt{5} - \sqrt{2})}{(\sqrt{5})^2 - (\sqrt{2})^2} = \frac{3\sqrt{5} - \sqrt{2}}{5 - 2}$$

$$= \frac{3(\sqrt{5} - \sqrt{2})}{3} = \sqrt{5} - \sqrt{2}$$

ietu nio St

 $\frac{3}{\sqrt{5} - \sqrt{3}} = \frac{3}{\sqrt{5} - \sqrt{3}} \times \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} + \sqrt{3}}$ $= \frac{3(\sqrt{5} + \sqrt{3})}{(\sqrt{5})^2 - (\sqrt{3})^2} = \frac{3(\sqrt{5} + \sqrt{3})}{5 - 3}$ (ii) $=\frac{3(\sqrt{5}+\sqrt{3})}{3(\sqrt{5}+\sqrt{3})}$ 1.2 EXERCISE Rationalize the denominator of following: 1. $\sqrt{2}+\sqrt{5}$ 13 (ii) (i) $4+\sqrt{3}$ (iv) $\frac{6-4\sqrt{2}}{6+4\sqrt{2}}$ (vi) $\frac{4\sqrt{3}}{\sqrt{7}+\sqrt{5}}$ $\frac{\sqrt{2}-1}{\sqrt{5}}$ (iii) $\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$ (v) Solutions: $\frac{13}{4+\sqrt{3}}$ (i) $\frac{13}{4+\sqrt{3}} \times \frac{4-\sqrt{3}}{4-\sqrt{3}} = \frac{13(4-\sqrt{3})}{(4+\sqrt{3})(4-\sqrt{3})}$ First, simplify the denominator using the difference of squares formula: $(4+\sqrt{3})(4-\sqrt{3}) = 4^2 - (\sqrt{3})^2 = 16 - 3 = 13$ Now simplify the numerator: $13(4-\sqrt{3}) = 52 - 13\sqrt{3}$

So the rationalized expression is: $\frac{52 - 13\sqrt{3}}{13}$ Simplifying: $=\frac{52}{13} - \frac{13\sqrt{3}}{13} = 4 - \sqrt{3}$

(ii)
$$\frac{\sqrt{2}+\sqrt{5}}{\sqrt{3}}$$

 $\frac{\sqrt{2}+\sqrt{5}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{(\sqrt{2}+\sqrt{5})\cdot\sqrt{3}}{\sqrt{3}\cdot\sqrt{3}}$
Simplify the denominator:
 $\sqrt{3}\cdot\sqrt{3} = 3$
Now simplify the numerator:
 $(\sqrt{2}+\sqrt{5})\cdot\sqrt{3} = \sqrt{6}+\sqrt{15}$
Thus, the rationalized expression is:
 $\frac{\sqrt{6}+\sqrt{15}}{3}$
(iii) $\frac{\sqrt{2}-1}{\sqrt{5}}$
 $\frac{\sqrt{2}-1}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{(\sqrt{2}-1)\cdot\sqrt{5}}{\sqrt{5}\cdot\sqrt{5}}$
Simplify the denominator:
 $\sqrt{5}\cdot\sqrt{5} = 5$
Now simplify the numerator:
 $(\sqrt{2}-1)\cdot\sqrt{5} = \sqrt{10} - \sqrt{5}$
Thus, the rationalized expression is:
 $\frac{\sqrt{10}-\sqrt{5}}{5}$
(iv) $\frac{6-4\sqrt{2}}{6+4\sqrt{2}} \times \frac{6-4\sqrt{2}}{6-4\sqrt{2}} = \frac{(6-4\sqrt{2})^2}{(6+4\sqrt{2})(6-4\sqrt{2})}$
First, simplify the denominator using the difference of squaress formula:

$$(6+4\sqrt{2})(6-4\sqrt{2})=6^2-(4\sqrt{2})^2=36-32=4$$

Pilot Super One Mathematics

Now simplify the numerator:

$$(6 - 4\sqrt{2})^2 = 6^2 - 2 \cdot 6 \cdot 4\sqrt{2} + (4\sqrt{2})^2 = 36 - 48\sqrt{2} + 32$$
$$= 68 - 48\sqrt{2}$$

Thus, the rationalized expression is:

$$\frac{\frac{68-48\sqrt{2}}{4}=\frac{68}{4}-\frac{48\sqrt{2}}{4}=17-12\sqrt{2}}{\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}}$$

1 18/24

(v)

$$\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} \times \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}} = \frac{\left(\sqrt{3} - \sqrt{2}\right)^2}{\left(\sqrt{3} + \sqrt{2}\right)\left(\sqrt{3} - \sqrt{2}\right)}$$

First, simplify the denominator using the difference of squares formula:

$$(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2}) = (\sqrt{3})^2 - (\sqrt{2})^2 = 3 - 2 = 1$$

Now simplify the numerator:

$$(\sqrt{3} - \sqrt{2})^2 = (\sqrt{3})^2 - 2 \cdot \sqrt{3} \cdot \sqrt{2} + (\sqrt{2})^2 = 3 - 2\sqrt{6} + 2$$

= 5 - 2\sqrt{6}

Thus, the rationalized expression is:

$$5 - 2\sqrt{6}$$

(vi)

$$\frac{4\sqrt{3}}{\sqrt{7} + \sqrt{5}} \times \frac{\sqrt{7} - \sqrt{5}}{\sqrt{7} - \sqrt{5}} = \frac{4\sqrt{3}(\sqrt{7} - \sqrt{5})}{(\sqrt{7} + \sqrt{5})(\sqrt{7} - \sqrt{5})}$$

The denominator is now in the form of $(a + b)(a - b) = a^2 - b^2$.

$$(\sqrt{7} + \sqrt{5})(\sqrt{7} - \sqrt{5}) = 7 - 5 = 2$$

Now, distribute $4\sqrt{3} \operatorname{across} (\sqrt{7} - \sqrt{5})$: $4\sqrt{3}(\sqrt{7} - \sqrt{5})$

Now, the expression becomes:

$$\frac{4\sqrt{3}(\sqrt{7}-\sqrt{5})}{2} = 2\sqrt{3}(\sqrt{7}-\sqrt{5})$$

Simplify the following

(i) $\left(\frac{81}{16}\right)^{-\frac{3}{4}}$ (ii) $\left(\frac{3}{4}\right)^{-2} \div \left(\frac{4}{9}\right)^{3} \times \frac{16}{27}$ (iii) $(0.027)^{-\frac{1}{3}}$ (iv) $\sqrt{\frac{x^{14} \times y^{21} \times z^{35}}{147}}$

(v)
$$\frac{5 \cdot (25)^{n+1} - 25 \cdot (5)^{2n}}{5 \cdot (25)^{2n+3} - (25)^{n+1}}$$
 (vi) $\frac{(16)^{x+1} + 20(4^{2x})}{2^{x-3} \times 8^{x+2}}$
 $-\frac{2}{3^n} \times 9^{n+1}$

 $3^{n-1} \times 9^{n-1}$

(vii)
$$(64)^{\overline{3}} \div (9)^{\overline{2}}$$
 (viii)

ix)
$$\frac{5^{n+3} - 6.5^{n+1}}{9 \times 5^n - 2^n \times 5^n}$$

(i) $\left(\frac{81}{16}\right)$

2.

$$\left(\frac{81}{16}\right)^{-\frac{3}{4}} = \frac{1}{\left(\frac{81}{16}\right)^{\frac{3}{4}}}$$

Next, simplify the expression $\left(\frac{81}{16}\right)^{\frac{3}{4}}$:
 $\left(\frac{81}{16}\right)^{\frac{3}{4}} = \frac{81^{\frac{3}{4}}}{16^{\frac{3}{4}}}$

Now calculate the powers:

$$81 = 3^{4} \implies 81^{\frac{3}{4}} = (3^{4})^{\frac{3}{4}} = 3^{3} = 27$$

$$16 = 2^{4} \implies 16^{\frac{3}{4}} = (2^{4})^{\frac{3}{4}} = 2^{3} = 8$$

Thus:

Thus:

$$\frac{81^{\frac{3}{4}}}{16^{\frac{3}{4}}} = \frac{27}{8}$$
Therefore, the simplified expression is:

$$\frac{1}{27} = \frac{8}{27}$$
(ii) $\left(\frac{3}{4}\right)^{-2} \div \left(\frac{4}{9}\right)^3 \times \frac{16}{27}$
First, simplify each part step by step.
 $\left(\frac{3}{4}\right)^{-2} = \frac{1}{\left(\frac{3}{4}\right)^2} = \frac{1}{\frac{9}{16}} = \frac{16}{9}$
 $\left(\frac{4}{9}\right)^3 = \frac{4^3}{9^3} = \frac{64}{729}$
Now combine all the terms:
 $\frac{16}{9} \div \frac{64}{729} \times \frac{16}{27}$
To divide by a fraction, multiply by its reciprocal:
 $\frac{16}{9} \times \frac{729}{64} \times \frac{16}{27}$
Multiply the numerators and denominators:
 $16 \times 729 \times 16 - 16^2 \times 729$

A previous for composition

1

 $\overline{9 \times 64 \times 27} = \overline{9 \times 64 \times 27}$ Simplify the expression step by step:

$$16^2 = 256$$
 and $64 \times 27 = 1728$

Now simplify:

$$\frac{256 \times 729}{9 \times 1728}$$

Factor the denominator

 $9 \times 1728 = 15552$ Thus, the simplified result is: $\frac{256 \times 729}{15552} = \frac{186624}{15552} = 12$

(iii)
$$(0.027)^{-\frac{1}{3}}$$

Simplify $(0.027)^{-\frac{1}{3}}$
Expression $(0.027)^{-\frac{1}{3}} = (27)^{-\frac{1}{3}} \times (10^{-3})^{-\frac{1}{3}}$
 $= (3^3)^{-\frac{1}{3}} \times (10^{-3})^{-\frac{1}{3}}$
 $= 3^{3\times-\frac{1}{3}} \times 10^{-3\times-\frac{1}{3}}$
 $= 3^{-1} \times 10^{1}$
 $= \frac{10}{3}$

(iv)
$$\sqrt[7]{\frac{x^{14}y^{21}z^{35}}{y^{14}z^7}}$$

First, simplify the expression inside the radical:

$$\frac{x^{14}y^{21}z^{35}}{y^{14}z^7} = x^{14} \times y^{21-14} \times z^{35-7} = x^{14} \times y^7 \times z^{28}$$

2"5 - 05 + 4++4

Now take the 7th root of each term:

$$\sqrt[7]{x^{14}} = x^2$$
, $\sqrt[7]{y^7} = y$, $\sqrt[7]{z^{28}} = z^4$

Thus, the simplified result is:

$$x^2yz^4$$

(v)
$$\frac{5 \cdot (25)^{n+1} - 25 \cdot (5)^{2n}}{5 \cdot (5)^{2n+3} - (25)^{n+1}}$$

Sol:
$$\frac{5 \cdot (25)^{n+1} - 25 \cdot (5)^{2n}}{5 \cdot (5)^{2n+3} - (25)^{n+1}}$$

Expression = $\frac{5(25)^{n+1}25(5)^{2n}}{5(5)^{2n+3} - (25)^{2n+1}} = \frac{5(5^2)^{n+a} - 5^2(5)^{2n}}{5(5)^{2n+3} - (5^2)^{n+1}}$

$$=\frac{5^{2n+3}-5^{2n+2}}{5^{2n+4}-5^{2n+2}}=\frac{5^{2n+2}(5-1)}{5^{2n+2}(5^2-1)}=\frac{4}{24}=\frac{1}{6}$$

(vi) $\frac{(16)^{x+1} + 20(4^{2x})}{2^{x-3} \times 8^{x+2}}$ Simplify the powers of 16 and 4 in terms of powers of 2: $16 = 2^4, \quad 4 = 2^2, \quad 8 = 2^3$

So:

$$\frac{(2^4)^{x+1} + 20(2^2)^{2x}}{2^{x-3} \times (2^3)^{x+2}}$$

Simplify the powers:

$$=\frac{2^{4(x+1)}+20\cdot 2^{4x}}{2^{x-3}\times 2^{3(x+2)}}$$

Simplify:

$$=\frac{2^{4x+4}+20\cdot 2^{4x}}{2^{x-3}\times 2^{3x+6}}$$

Now factor out 2^{4x} from the numerator:

$$=\frac{2^{4x}(2^4+20)}{2^{x-3}\times 2^{3x+6}}$$

Simplify further:

$$=\frac{2^{4x} \times 36}{2^{x-3} \times 2^{3x+6}} = \frac{36 \times 2^{4x}}{2^{4x+3}}$$
$$=\frac{36}{2^3}$$

Cancel out the 24x:

$$=\frac{36}{8}=\frac{9}{2}$$

(vii) $(64)^{\frac{4}{3}} \div (9)^{\frac{3}{2}}$

We begin by rewriting 64 and 9 as powers of 2 and 3, respectively:

 $64 = 2^6$ and $9 = 3^2$ Now apply the negative exponents:

$$(64)^{\frac{2}{3}} = (2^6)^{\frac{2}{3}} = 2^{-4}$$
$$(9)^{\frac{3}{2}} = (3^2)^{\frac{3}{2}} = 3^{-3}$$

Now simplify the division: $2^{-4} \div 3^{-3} = 2^{-4} \times 3^3 = \frac{3^3}{2^4}$ Simplifying powers: $3^3 = 27$ and $2^4 = 16$ Thus, the simplified result is: $\frac{27}{16}$ (viii) $\frac{3^n \times 9^{n+1}}{3^{n-1} \times 9^{n-1}}$ First, rewrite 9 as 3^2 :

 $9^{n+1} = (3^2)^{n+1} = 3^{2(n+1)} = 3^{2n+2}$ $9^{n-1} = (3^2)^{n-1} = 3^{2(n-1)} = 3^{2n-2}$

Now simplify the expression: $\frac{3^n \times 3^{2n+2}}{3^{n-1} \times 3^{2n-2}}$

Use the property of exponents $a^{m}.a^{n} = a^{m+n}$ = $\frac{3^{n+2n+2}}{3^{n-1+2n-2}} = \frac{3^{3n+2}}{3^{3n-3}}$

Now subtract the exponents:

 $= 3^{(3n+2)-(3n-3)} = 3^5$

Thus, the simplified result is:

$$3^5 = 243$$

(ix)
$$\frac{5^{n+3}-6.5^{n+3}}{9\times 5^n-22\times 5^n}$$

First, factor the denominator:

$$9 \times 5^n - 2^2 \times 5^n = 5^n (9 - 2^2)$$

Thus, the expression becomes:

$$\frac{5^{n+3}-6.5^{n+1}}{5^n(9-2^2)}$$

Now factor out 5^n from the numerator:

 $5^{n+3} = 5^n \times 5^3 = 5^n \times 125$

So, the expression becomes:

$$\frac{5^{n}(125-65)}{5^{n}(9-22)} = \frac{125-30}{9-2^{n}} = \frac{125-30$$

~ .

$$=3+3=6$$

$$x+\frac{1}{x}=6$$

$$\left(x+\frac{1}{x}\right)^{2}=(6)^{2}$$

$$x^{2}+\frac{1}{x^{2}}+2=36$$

$$x^{2}+\frac{1}{x^{2}}+2=36-2$$

$$x^{2}+\frac{1}{x^{2}}+2=34$$
(iv) $x^{2}-\frac{1}{x^{2}}$
First, we square $x=3+\sqrt{8}$:
 $x^{2}=(3+\sqrt{8})^{2}$
Expanding:
 $x^{2}=3^{2}+2(3)(\sqrt{8})+(\sqrt{8})^{2}$
 $x^{2}=9+6\sqrt{8}+8$
 $x^{2}=17+6\sqrt{8}$
Now,
 $\frac{1}{x}=\frac{1}{3+\sqrt{8}}\times\frac{3-\sqrt{8}}{3-\sqrt{8}}$
Now, we simplify the denominator:
 $(3+\sqrt{8})(3-\sqrt{8})=3^{2}-(\sqrt{8})^{2}=9-8=1$
So, $\frac{1}{x}=3-\sqrt{8}$.
Next, square $\frac{1}{x}$:
 $\frac{1}{x^{2}}=(3-\sqrt{8})^{2}$

Expanding: $\frac{1}{r^2} = 3^2 - 2(3)(\sqrt{8}) + (\sqrt{8})^2$ $\frac{1}{x^2} = 9 - 6\sqrt{8} + 8$ $\frac{1}{x^2} = 17 - 6\sqrt{8}$ Now, subtract $\frac{1}{x^2}$ from x^2 : $x^2 - \frac{1}{x^2} = (17 + 6\sqrt{8}) - (17 - 6\sqrt{8})$ $x^2 - \frac{1}{x^2} = 17 + 6\sqrt{8} - 17 + 6\sqrt{8}$ $x^{2} - \frac{1}{x^{2}} = 12\sqrt{8}$ $x^{2} - \frac{1}{x^{2}} = 12 \times 2\sqrt{2} = 24\sqrt{2}$ $x^4 + \frac{1}{r^4}$ (v) First, we square $x = 3 + \sqrt{8}$: $x^2 = \left(3 + \sqrt{8}\right)^2$ Expanding: $x^{2} = 3^{2} + 2(3)(\sqrt{8}) + (\sqrt{8})^{2}$ $x^{2} = 9 + 6\sqrt{8} + 8$ $x^2 = 17 + 6\sqrt{8}$ Now, $(x^2)^2 = (17 + 6\sqrt{8})^2$ $x^{4} = 17^{2} + 2(17)(6\sqrt{8}) + (6\sqrt{8})^{2}$ $= 289 + 204\sqrt{8} + 288$ = 577 + 204 \[\string 8 $\frac{1}{x} = \frac{1}{3+\sqrt{8}} \times \frac{3-\sqrt{8}}{3-\sqrt{8}}$ Now, Now, we simplify the denominator: $(3+\sqrt{8})(3-\sqrt{8}) = 3^2 - (\sqrt{8})^2 = 9 - 8 = 1$

So,
$$\frac{1}{x} = 3 - \sqrt{8}$$
.
Next, square $\frac{1}{x}$:
Expanding:
 $\frac{1}{x^2} = (3 - \sqrt{8})^2$
Expanding:
 $\frac{1}{x^2} = 3^2 - 2(3)(\sqrt{8}) + (\sqrt{8})^2$
 $\frac{1}{x^2} = 9 - 6\sqrt{8} + 8$
 $\frac{1}{x^2} = 17 - 6\sqrt{8}$
Now;
 $(\frac{1}{x^2})^2 = (17 - 6\sqrt{8})^2$
 $\frac{1}{x^4} = (17)^2 - 2(17)(6\sqrt{8}) + (6\sqrt{8})^2$
 $= 289 - 204\sqrt{8} + 288$
 $= 577 - 204\sqrt{8}$
Now, add x^4 and $\frac{1}{x^4}$:
 $x^4 + \frac{1}{x^4} = (577 + 204\sqrt{8}) + (577 - 204\sqrt{8})$
 $x^4 + \frac{1}{x^4} = 577 + 577$
 $x^4 + \frac{1}{x^4} = 1154$.
(vi) $(x - \frac{1}{x})^2$
 $x = 3 + \sqrt{8}$
 $\frac{1}{x} = \frac{1}{3 + \sqrt{8}} \times \frac{3 - \sqrt{8}}{3 - \sqrt{8}}$
 $= \frac{3 - \sqrt{8}}{(3)^2 - (\sqrt{8})^2}$

$$=\frac{3-\sqrt{8}}{9-8}$$
$$=\frac{3-\sqrt{8}}{1}$$
$$\frac{1}{x}=3-\sqrt{8}$$

Now, subtract $\frac{1}{x}$ from x:

$$x - \frac{1}{x} = (3 + \sqrt{8}) - (3 - \sqrt{8})$$
$$x - \frac{1}{x} = 3 + \sqrt{8} - 3 + \sqrt{8}$$
$$x - \frac{1}{x} = 2\sqrt{8} = 4\sqrt{2}$$

Now, square $x - \frac{1}{x}$:

$$\left(x - \frac{1}{x}\right)^2 = \left(4\sqrt{2}\right)^2$$
$$\left(x - \frac{1}{x}\right)^2 = 16 \times 2 = 32$$

Find the rational numbers p and q such that $\frac{8-3\sqrt{2}}{4+3\sqrt{2}} = p + q\sqrt{2}$

Multiply the expression by $\frac{4-3\sqrt{2}}{4-3\sqrt{2}}$ $\frac{8-3\sqrt{2}}{4+3\sqrt{2}} \times \frac{4-3\sqrt{2}}{4-3\sqrt{2}} = \frac{(8-3\sqrt{2})(4-3\sqrt{2})}{(4+3\sqrt{2})(4-3\sqrt{2})}$ The denominator is a difference of squares:

 $(4+3\sqrt{2})(4-3\sqrt{2}) = 4^2 - (3\sqrt{2})^2 = 16 - 18 = -2$ Now, expand the numerator $(8-3\sqrt{2})(4-3\sqrt{2})$: $(8-3\sqrt{2})(4-3\sqrt{2}) = 8 \cdot 4 + 8 \cdot (-3\sqrt{2}) + (-3\sqrt{2}) \cdot 4 + (-3\sqrt{2}) \cdot (-3\sqrt{2})$

$$\begin{aligned} &= 32 - 24\sqrt{2} - 12\sqrt{2} + 18 \\ &= 32 + 18 - 36\sqrt{2} \\ &= 50 - 36\sqrt{2} \\ &= 50 - 36\sqrt{2} \\ &= 50 - 36\sqrt{2} \\ &= \frac{50}{-2} - \frac{36\sqrt{2}}{-2} \\ &= \frac{50}{-2} - \frac{56\sqrt{2}}{-2} \\ &= \frac{54\sqrt{2}^{3/2}}{(3^{3})^{1/4} + 3^{3/2} + 2^{3/2}} \\ &= \frac{54\sqrt{2}^{3/2}}{(3^{3})^{1/4} + 3^{3/2} + 2^{3/2}} \\ &= \frac{54\sqrt{3}^{3/2}}{(3^{3})^{1/4} + 3^{3/2} + 2^{3/2}} \\ &= \frac{54\sqrt{3}^{3/2}}{(10^{\frac{3}{2}} \times (23)^{\frac{3}{2}}} \\ &= \sqrt{\frac{(6^{3})^{\frac{3}{2}} \times (23)^{\frac{3}{2}}}} \\ &= \sqrt{\frac{(6^{3})^{\frac{3}{2}} \times (23)^{\frac{3}{2}}} \\ &= \sqrt{\frac{(6^{3})$$

$$\sqrt{\frac{36 \times 5}{125}} = \sqrt{\frac{180}{125}} = \sqrt{\frac{36}{25}} = \frac{6}{5}$$
(iv) $\left(a^{\frac{1}{3}} + b^{\frac{2}{3}}\right) \times \left(a^{\frac{2}{3}} - a^{\frac{1}{3}}b^{\frac{2}{3}} + b^{\frac{4}{3}}\right)$
Sol: $\left(a^{\frac{1}{3}} + b^{\frac{2}{3}}\right) \times \left(a^{\frac{2}{3}} - a^{\frac{1}{3}}b^{\frac{2}{3}} + b^{\frac{4}{3}}\right)$
 $= \left(a^{\frac{1}{3}} + b^{\frac{2}{3}}\right) \times \left[\left(a^{\frac{1}{3}}\right)^2 - \left(a^{\frac{1}{3}}\right)\left(b^{\frac{2}{3}}\right) + \left(b^{\frac{2}{3}}\right)^2\right]$
 $\therefore (x+y)(x^2 - xy + y^2) = x^3 + y^3$
 $\left(a^{\frac{1}{3}}\right)^3 + \left(b^{\frac{2}{3}}\right)^3 = a^{\frac{1}{3}x_3} + b^{\frac{3}{3}x_3} = a + b^2$
Example 9: The sum of two real numbers is 8, and their difference is 2. Find the numbers.
Solution: Let a and b be two real numbers then
 $a + b = 8$...(i)
 $a - b = 2$...(ii)
Add eq. (i) and eq. (ii)
 $2a = 10 \Rightarrow a = 5$ put in eq. (i)
 $\Rightarrow 5 - b = 2 \Rightarrow -b = 2 - 5 \Rightarrow -b = -3 \Rightarrow b = 3$
So, 5 and 3 are required real numbers
Example 10; Normal human body temperature is 98.6 F.
Convert it into Celsius and kelvin scale.
Solution: Given that F = 98.6
So convert it into Celsius scale, we use
 $C = \frac{5}{9}(F - 32)$
 $C = \frac{5}{9}(98.6 - 32)^2$
 $= \frac{5}{9}(66.6)$

= (0.55)(66.6)

$$C = 37'$$

(ii)

Hence, normal human body temperature at Celsius scale is 37°
(i) Profit = selling Price - cost price (i)

Profit = setting r file
P = SP - CP
Profit % =
$$\left(\frac{profit}{CP} \times 100\right)$$
%
Loss = cost price - selling pric
Loss = CP - SP
Loss % = $\left(\frac{loss}{CP} \times 100\right)$ %

Example 11: Hamail purchased a bicycle for Rs. 6590' and sold it for 6850. Find the profit percentage.

Solution:	Cost Price	= CP = Rs. 6590
	Selling Price	= SP = Rs. 6850
	Profit	= SP $-$ CP
		= 6850 - 6590
		= Rs 260

Now, we find the profit percentage.

Profit %

$$= \left(\frac{profit}{CP} \times 100\right)\%$$
$$= \left(\frac{260 \times 100}{6590}\right)\%$$
$$= 3.94\%$$

≈ 4%

Example 12: Umair bought a book for Rs. 850 and sold it for Rs.720. What was his loss percentage? Solution: Cost price of book = CP = Rs. 850Selling price of book = SP = Rs. 720

Loss = CP - SP

$$= 850 - 720$$

$$= Rs. 130$$

$$Loss percentage = \left(\frac{Loss}{CP} \times 100\right)\%$$

$$= \left(\frac{130}{850} \times 100\right)\%$$

$$= 15.29\%$$
Example 13: Saleem, Nadeem, and Tanveer earned a profit of Rs. 4,50,000 from a business. If their investments in the business are the ratio 4: 7: 14, find each person's profit.
Solution: Profit earned = Rs. 4,50,000
Given ratio = 4+7+1=25
Saleem earned profit = $\frac{4}{25} \times 4,50,000$
 $= Rs. 72,000$
Nadeem earned profit = $\frac{7}{25} \times 4,50,000$
 $= Rs. 126,000$
Tanveer earned profit = $\frac{14}{25} \times 4,50,000$
 $= Rs. 252,000$
Example 14: If the simple profit on Rs. 6400 for 12 years is Rs.
3840. Find the rate of profit.
Solution: Principal = Rs. 6400
Simple profit = Rs. 3840
Time = 12 years
To find the rate we use the following formula
Rate = $\frac{amount of profit \times 100}{ime \times principal}$
 $= \frac{3840 \times 100}{12 \times 6400}$
 $= 5\%$ Thus, rate of profit is 5%

EXERCISE 1.3

The sum of three consecutive integers is forty-two, find 1. three integers. Solution: Let the three consecutive integers be: x, x + 1, x + 2The sum of these integers is 42: x + (x + 1) + (x + 2) = 42Simplifying the equation: 3x + 3 = 42Now, subtract 3 from both sides: 3x = 39Now, divide by 3: x = 13So, the three consecutive integers are: 13,14,15 Thus, the three integers are 13, 14, and 15. The diagram shows right angled 2. $\triangle ABC$ in which the length of AC is $(\sqrt{3}+\sqrt{5})$ cm. The area of $\triangle ABC$ is $(1+\sqrt{15})$ cm², Find the length AB in the $(\sqrt{3} + \sqrt{5})cm$ 4 form $(a\sqrt{3}+b\sqrt{5})$ cm where a and b are integers. Solution: Given: • Triangle $\triangle ABC$, where $AC = \sqrt{3} + \sqrt{5}$ cm. Area of $\triangle ABC = 1 + \sqrt{15}$ cm². • AB is to be expressed as $AB = a\sqrt{3} + b\sqrt{5}$ cm, where a and b are integers.

Step-by-Step Solution:

1. Formula for the area of the triangle: The area of a triangle can be written as:

Angle
$$A = 900$$

Angle $A = \theta$
 $\overline{AC} = \sqrt{3} + \sqrt{5}$
 $AB = a\sqrt{3} + b\sqrt{5}$
 $AB = a\sqrt{3} + b\sqrt{5}$
 $Area = 1 + \sqrt{15}$
 a and b are to determined.
Area of $\Delta ABC = \frac{1}{2}AC \times AB$
 $\frac{1}{2}AC \times AB = 1 + \sqrt{15}$
 $\frac{1}{2}(\sqrt{3} + \sqrt{5})a\sqrt{3} + b\sqrt{5} = 1 + \sqrt{15}$
 $a\sqrt{3} + b\sqrt{5} = \frac{2(1 + \sqrt{15})}{\sqrt{3} + \sqrt{5}}$
Rationalizing the R.H.S
 $a\sqrt{3} + b\sqrt{5} = \frac{2(1 + \sqrt{15})(\sqrt{3} - \sqrt{5})}{(\sqrt{3} + \sqrt{5})(\sqrt{3} - \sqrt{5})}$
 $= \frac{2(1 + \sqrt{15})(\sqrt{3} - \sqrt{5})}{-2}$
 $a\sqrt{3} + b\sqrt{5} = -(1 + \sqrt{15})(\sqrt{3} - \sqrt{5})$
 $= -[\sqrt{3} - \sqrt{5} + 3\sqrt{5} - 5\sqrt{3}]$
 $= -[\sqrt{3} - \sqrt{5} + 3\sqrt{5} - 5\sqrt{3}]$
 $= -[2\sqrt{5} - 4\sqrt{3}]$
 $= -2\sqrt{5} + 4\sqrt{3}$

 $a\sqrt{3} + b\sqrt{5} = 4\sqrt{3} - 2\sqrt{5}$ imparing the coefficients of $\sqrt{3}$ and $\sqrt{5}$ we get a = 4; b = -2A rectangle has sides of length $(2+\sqrt{18})m$ and $(5-\frac{4}{\sqrt{2}})m$. Express he area of the rectangle in the form $a + b\sqrt{2}$ where aandb are integers. **Problem Statement:** We are given a rectangle with sides of length: $(2 + \sqrt{18})$ meters and • $\left(5-\frac{4}{\sqrt{2}}\right)$ meters. are asked to find the area of the rectangle in the form a +, where a and b are integers. p 1: Simplify the lengths of the sides ST SIDE: $2 + \sqrt{18}$ can simplify $\sqrt{18}$ as: $\sqrt{18} = \sqrt{9 \times 2} = \sqrt{9} \times \sqrt{2} = 3\sqrt{2}$ the first side becomes: $2 + \sqrt{18} = 2 + 3\sqrt{2}$ COND SIDE: $5 - \frac{4}{\sqrt{2}}$ implify $\frac{4}{\sqrt{2}}$, multiply both the numerator and denominator by $\frac{4}{\sqrt{2}} = \frac{4}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{4\sqrt{2}}{2} = 2\sqrt{2}$ he second side becomes:

$$5-\frac{4}{\sqrt{2}}=5-2\sqrt{2}$$

Step 2: Find the area of the rectangle The area A of the rectangle is the product of its two sides:

$$A = \left(2 + 3\sqrt{2}\right) \times \left(5 - 2\sqrt{2}\right)$$

2x = 90

We now expand this expression using the distributive property (FOIL method):

$$A = 2 \times 5 + 2 \times (-2\sqrt{2}) + 3\sqrt{2} \times 5 + 3\sqrt{2} \times (-2\sqrt{2})$$

Let's simplify each term:

- $2 \times 5 = 10$
- $2 \times (-2\sqrt{2}) = -4\sqrt{2}$
- $3\sqrt{2} \times 5 = 15\sqrt{2}$
- $3\sqrt{2} \times (-2\sqrt{2}) = -6 \times 2 = -12$

Now combine all the terms:

 $A = 10 - 4\sqrt{2} + 15\sqrt{2} - 12$

Step 3: Combine like terms

- The constant terms: 10 12 = -2
- The terms with $\sqrt{2}$: $-4\sqrt{2} + 15\sqrt{2} = 11\sqrt{2}$

Thus, the area is:

$$A = -2 + 11\sqrt{2}$$

Find two numbers whose sum is 68 and difference is 22. 4.

Problem Statement: Sol:

We need to find two numbers whose sum is 68 and whose difference is 22. Let's denote these two numbers by x and y. We have the following two equations:

- x + y = 68 (Equation 1: The sum of the numbers is 68)
- x y = 22 (Equation 2: The difference of the numbers is 22)

Step 1: Add the two equations

To eliminate y, we can add Equation 1 and Equation 2 together. And better & at This will help us solve for x.

$$(x + y) + (x - y) = 68 + 22$$

Simplifying both sides:

here I. Find the area of the rec x + x = 90 of a correction term.

SVE + 51 = 1

$$r = \frac{90}{-1} = 45$$

Step 2: Substitute x = 45 into Equation 1 Now that we have x = 45, we can substitute this value into Equation 1 to solve for y.

x + y = 68

45 + y = 68

Substituting x = 45:

Solve for y:

$$y = 68 - 45 = 23$$

The weather in Lahore was unusually warm during the summer of 2024. The TV news reported temperatures as high as 48°C. By using the formula,

 $(F = \frac{9}{5}C + 32)$ find the temperature as Fahrenheit

and the little wet but

scale.

 $F = \frac{9}{5}C + 32$ Sol:

Given:

The temperature in Lahore during the summer of 2024 is 48°C. Step 1: Plug the given value of C = 48 into the formula

$$F = \frac{9}{5}(48) + 32$$

Step 1: Calculate the value of $\frac{9}{5} \times 48$

$$\frac{9}{5} \times 48 = \frac{432}{5} = 86.4$$

Step 3: Add 32 to 86.4

F = 86.4 + 32 = 118.4

5.

The sum of the ages of the father and son is 72. Six 6. years ago the father's age was 2 times the age of the son. What was Son's age six years ago? Let the present age of the father be F and the present age Sol: of the son be S. Given: 1. The sum of their ages is 72: F + S = 72 (Equation 1) 2. Six years ago, the father's age was twice the son's age: F - 6 = 2(S - 6) (Equation 2) Step 1: Solve the system of equations FROM EQUATION 1: F + S = 72Solving for F: F = 72 - SSUBSTITUTE F = 72 - S INTO EQUATION 2: 72 - 5 - 6 = 2(5 - 6)Simplifying: 66 - S = 2(S - 6)66 - S = 2S - 12Now, solve for S: 66 + 12 = 2S + S78 = 35 $S = \frac{78}{2} = 26$ Step 2: Find the Father's current age Now that we know the son's age, we can substitute S = 26 into Equation 1: F + 26 = 72F = 72 - 26 = 46Step 3: Find the Son's age 6 years ago The son's current age is 26, so 6 years ago: S-6=26-6=20

Mirha bought a toy for Rs. 1500 and sold for Rs. 1520. What was her profit percentage?

Sol:
C. P = 1500
S. P = 1520
Profit % = 20
Profit % =
$$\frac{20 \times 1.90}{15.90}$$
 =

7.

= 1.33%
8. The annual income of Tayyab is Rs. 9,60,000, while the exempted amount is Rs. 1,30,000. How much tax would he have to pay at the rate of 0.75%.

Sol: Given:

- Annual income of Tayyab = Rs. 9,60,000
- Exempted amount = Rs. 1,30,000
- Tax rate = 0.75%

Step 1: Calculate the taxable income Taxable income is calculated by subtracting the exempted amount from the total income.

Taxable Income = Annual Income - Exempted Amount Taxable Income = 9,60,000 - 1,30,000 Taxable Income = Rs. 8,30,000

Step 2: Calculate the tax to be paid

The tax is calculated at a rate of 0.75% on the taxable income.

$$Tax = \frac{0.75}{100} \times Taxable Income$$
$$Tax = \frac{0.75}{100} \times 8,30,000$$
$$Tax = 0.0075 \times 8,30,000$$
$$Tax = Rs. 6,225$$

V. In Michael

9. Find the compound markup on Rs. 3,75,000 for one year		
at the rate of 14% compounded annually.	1.	Choos
Sol: To calculate the compound markup on Rs. 3,75,000 at a	(i)	$\sqrt{7}$ is
rate of 14% compounded annually for one year, we can use the		(a)
formula for compound interest:	(11)	(c) π and π
	(ii)	(a)
$A = P \left(1 + \frac{r}{100} \right)^n$		(c)
Given: which and and an entry of the sustained interest of the	(iii)	If n is
Given: • $P = 3,75,000$ (principal amount)		(a)
• $P = 3,75,000$ (principal and any solution of the set of solution of the set of the s		(c)
• $r = 14\%$ (interest rate)	(iv)	$\sqrt{3} + \sqrt{a}$
• $n = 1$ year (since the interest is compounded for one		(a) (c)
year)	(v)	For all
Step 1: Substitute the values into the compound interest		(a)
formula: some some entre dere veldetningtes at entre these		(c)
	(vi)	Let a, b
$A = 3,75,000 \left(1 + \frac{14}{100}\right)^1$		
A = 3,75,000(1 + 0.14)		(a) '
100,04,3 eA = 50mont states?	(vii)	$\begin{array}{c} (c) \\ 2^x \times 8^x = \end{array}$
	(VII)	
Step 2: Calculate the amount after one year:		(a) ·
$A = 3,75,000 \times 1.14 = 4,27,500$		
Step 3: Calculate the compound markup:		(c)
The compound markup is the difference between the final	(viii)	Let a, b ,
amount and the principal:		(a) R
Unit of the second s		(c) T
Compound Markup = $A - P$ Compound Markup = 4,27,500 - 3,75,000	(ix)	$\sqrt{75} + \sqrt{2}$
Compound Markup = $4,27,500 - 3,75,000$ Compound Markup = $52,500$		(a)

3

1. 1. 1. 1. A. M.

REVIEW EXERCISE 1

		and the second se		and the second design of the
1.		oose the correct optio	n.	
(i)	17		(b)	Rational number
	(a)	Integer		Natural number
	(c)	Irrational number	(d)	Natural number
(ii)		d e are:	4	Integer
	(a)	Natural number	(b)	Integers Irrational number
	(c)	Rational number	(d)	
(iii)		is not a perfect square		
	(a)	Rational number	(b)	Natural number
	(c)	Integer	(d)	Irrational number
(iv)	√3 +	$\sqrt{5}$ is:		
	(a)	Whole number	(b)	Integer
	(c)	Rational number	(d)	Irrational number
(v)	For a	Il $x \in R$, $x = x$ is call	ed:	
	(a)	Reflexive property	(b)	Transitive number
	(c)	Symmetric property	(d)	Trichotomy property
(vi)	Let a	$b, c \in R$ then $a > b$ and	d b > c	$\Rightarrow a > c$ is called
		property.	1	
	(a)	Trichotomy	(b)	Transitive
,	(c)	Additive	(d)	Multiplicative
vii)	2*×8	x = 64 then $x =$		•
	(a)	3		3
	(a)	2	(b)	4
		5	N. A.	2
	(c)	$\frac{5}{6}$	(d)	3 13
/iii)	Let a,	$b, \in R$ then $a = b$ and b	b = a is	called property.
	(a)	Reflexive	(b)	Symmetric
	(c)	Transitive		Additive
x)	-	$\sqrt{27} =$		
	(a)	√102	(b)	9√3
and the second s				

8/3 (d) 5/3 (c) The product of $(3+\sqrt{5})(3-\sqrt{5})$ is: (x) odd number (b) Prime number (a) Rational number (d) Irrational number (c) Answers: (v) d (iv) a d (iii) d (ii) (i) C (x) (ix) d d a (viii) (vii) a b (vi) If $a = \frac{3}{2}$, $b = \frac{5}{3}$ and $c = \frac{7}{5}$, then verify that 2. (i) a(b+c) = ab + ac (ii) (a+b)c = ac + bcWe are given: $a = \frac{3}{2}, \quad b = \frac{5}{3}, \quad c = \frac{7}{5}$ Verify a(b+c) = ab + ac(i) L.H.S a(b+c)First, calculate b + c: $b + c = \frac{5}{3} + \frac{7}{5}$ $b+c=\frac{25+21}{15}$ $b + c = \frac{46}{15}$ Now, multiply by a: $a(b+c) = \frac{3}{2} \times \frac{46}{15}$ $a(b+c) = \frac{3 \times 46}{2 \times 15} = \frac{138}{30} =$ R.H.S: ab + acNow, calculate ab and ac. First, calculate ab: $ab = \frac{3}{2} \times \frac{5}{3}$ $ab = \frac{15}{6} = \frac{5}{2}$

Next, calculate ac: $ac = \frac{3}{2} \times \frac{7}{5}$ $ac = \frac{21}{15}$ Section 1 Now, add ab and ac: $ab + ac = \frac{5}{2} + \frac{21}{10}$ $=\frac{25+21}{10}=\frac{46}{10}=\frac{23}{5}\dots(B)$ Thus, the first equation is verified: a(b + c) = ab + ac. Verify (a + b)c = ac + bc(ii) L.H.S: (a + b)cFirst, calculate a + b: $a+b=\frac{3}{2}+\frac{5}{3}=\frac{9+10}{6}=\frac{19}{6}$ Now, multiply by c: $(a+b)c = \frac{19}{6} \times \frac{7}{5}$ $(a+b)c = \frac{19 \times 7}{6 \times 5} = \frac{133}{30}$ R.H.S: ac + bcNow, calculate ac and bc. First, calculate ac: $ac = \frac{3}{2} \times \frac{7}{5} = \frac{21}{10}$ Next, calculate bc: $bc = \frac{5}{3} \times \frac{7}{5} = \frac{35}{15} = \frac{7}{3}$ Now, add ac and bc: $ac + bc = \frac{21}{10} + \frac{7}{3}$ $=\frac{63+70}{30}=\frac{133}{30}$

Thus, the second equation is also verified: (a + b)c = ac + bc. If $a = \frac{4}{3}$, $b = \frac{5}{2}$, $c = \frac{7}{4}$, Then, verify the Associative 3. property of real numbers. w.r.t addition and multiplication. $a = \frac{4}{3}, \quad b = \frac{5}{2}, \quad c = \frac{7}{4}$ Sol: Associative Property of Addition: (i) The associative property of addition states: (a+b)+c=a+(b+c)L.H.S: (a + b) + cFirst, calculate a + b: $a+b=\frac{4}{3}+\frac{5}{2}$ $=\frac{8+15}{6}=\frac{23}{6}$ Now, add c to this result: $(a+b) + c = \frac{23}{6} + \frac{7}{4}$ $=\frac{46+21}{12}=\frac{67}{12}$ R.H.S: a + (b + c)First, calculate b + c: $\frac{10+7}{4} = \frac{17}{4}$ Now, add a to this result: $a + (b + c) = \frac{4}{3} + \frac{17}{4}$ Conclusion: Both sides are equal:

$$(a + b) + c = a + (b + c) = \frac{67}{12}$$

Thus, the associative property of addition is verified.
Associative Property of Multiplication:
The associative property of multiplication states:
 $(a \times b) \times c = a \times (b \times c)$
L.H.S: $(a \times b) \times c$
First, calculate $a \times b$:
 $a \times b = \frac{4}{3} \times \frac{5}{2}$
 $= \frac{20}{2} = \frac{10}{2}$

Now, multiply this result by c:

 $(a \times b) \times c = \frac{10}{3} \times \frac{7}{4}$ $= \frac{70}{12} = \frac{35}{6}$

R.H.S: $a \times (b \times c)$ First, calculate $b \times c$: $b \times c = \frac{5}{2} \times \frac{7}{4} = \frac{35}{8}$ Now, multiply a by this result: $a \times (b \times c) = \frac{4}{3} \times \frac{35}{8} = \frac{140}{24} = \frac{35}{6}$

Conclusion:

4.

(ii)

Both sides are equal:

$$(a \times b) \times c = a \times (b \times c) = \frac{35}{6}$$

Thus, the associative property of multiplication is verified. Is 0 a rational number? Explain.

beer to enclose their sector because that

Ans. Yes, 0 is a rational number.

Explanation:

A rational number is any number that can be expressed in the form:

where p and q are integers, and $q \neq 0$.

For 0:

• It can be written as $\frac{0}{q}$, where $q \neq 0$.

For example:

$$0 = \frac{0}{1}, \quad 0 = \frac{0}{-5}, \quad 0 = \frac{0}{10}, \text{ and so on.}$$

Since 0 satisfies the condition of being expressible as a fraction with an integer numerator (0) and a non-zero integer denominator (q), it is classified as a **rational number**.

5. State trichotomy property of real numbers.

- Ans. The Trichotomy Property of real numbers states:
 - For any two real numbers a and b, exactly one of the following three statements is true:
 - 1. a < b (i.e., a is less than b),
 - 2. a = b (i.e., a is equal to b),
 - 3. a > b (i.e., a is greater than b).

This property ensures that any two real numbers can be compared, and there is no overlap or ambiguity in their relationship.

6. Find two rational numbers between 4 and 5.

Solution:

Two rational numbers between 4 and 5.

Average of 4 and 5
$$=\frac{4+5}{2}=\frac{9}{2}$$

Average of $\frac{9}{2}$ and 5 $=\left(\frac{9}{2}+5\right)\div 2$
 $=\left(\frac{9+10}{2}\right)\times\frac{1}{2}=\frac{19}{2}\times\frac{1}{2}=$

Thus, two rational numbers between 4 and 5 are $\frac{9}{2}$ and $\frac{1}{2}$

Simplify the following:

(i)
$$\sqrt[5]{\frac{x^{15}y^{35}}{z^{20}}}$$
 (ii) $\sqrt[3]{(27)^{24}}$
(iii) $\frac{6(3)^{n+2}}{3^{n+1}-3^n}$

$$\sqrt[5]{\frac{x^{15}y^{35}}{z^{20}}}$$

SOLUTION:

7.

The fifth root simplifies as:

$$\sqrt[5]{\frac{x^{15}y^{35}}{z^{20}}} = \frac{\sqrt[5]{x^{15}} \cdot \sqrt[5]{y^{35}}}{\sqrt[5]{z^{20}}}.$$

Using the property
$$\sqrt[n]{a^m} = a^{\frac{m}{n}}$$
:

$$\sqrt[5]{x^{15}} = x^{\frac{15}{5}} = x^3$$
, $\sqrt[5]{y^{35}} = y^{\frac{35}{5}} = y^7$, $\sqrt[5]{z^{20}} = z^{\frac{20}{5}} = z^4$.
Thus:

$$\int_{1}^{5} \frac{x^{15}y^{35}}{z^{20}} = \frac{x^{3}y^{7}}{z^{4}}.$$

Answer:

Problem (ii): Simplify

$$\sqrt[3]{(27)^{2x}}$$

SOLUTION: The cube root simplifies as:

$$\sqrt[3]{(27)^{2x}} = (27^{2x})^{\frac{1}{3}} = 27^{\frac{2x}{3}}$$

Express 27 as 3³:

 $27^{\frac{2x}{3}} = (3^3)^{\frac{2x}{3}}.$

Using the property $(a^m)^n = a^{m \cdot n}$: $(3^3)^{\frac{2x}{3}} = 3^{3 \cdot \frac{2x}{3}} = 3^{2x}$. Answer: 32x. Problem (iii): Simplify $6 \cdot 3^{n+2}$ 3n+1 - 3n SOLUTION: $6 \cdot 3^{n+2}$ 3n+1 - 3n $=\frac{6\cdot 3^{n+2}}{3^n(3-1)}$ $=\frac{6\cdot 3^{n+2}}{3^n}$ $= 3 \cdot 3^{(n+2)-n} = 3 \cdot 3^2 = 3 \cdot 9 = 27.$ Answer: 27. The sum of three consecutive odd integers is 51. Find 8. the integers. Let the three consecutive odd integers be x, x + 2, and x + 4. The sum of the three integers is given as 51: x + (x + 2) + (x + 4) = 51.x + x + 2 + x + 4 = 51, 3x + 6 = 51.Subtract 6 from both sides: 3x = 45. 10111100 Divide both sides by 3: x = 15. x = 15, x + 2 = 17, x + 4 = 19.The three integers are: Sum the three integers: 15 + 17 + 19 = 51.

This is correct. Final Answer:1 The three consecutive odd integers are: 15,17, and 19. 9. Abdullah picked up 96 balls and placed them into two buckets. One bucket has twenty-eight more balls than the other bucket. How many balls are in each bucket? Let the number of balls in the smaller bucket be x. Then the number of balls in the larger bucket will be x + 28, as it has 28 more balls than the smaller bucket. The total number of balls in the two buckets is 96: x + (x + 28) = 96.

Combine like terms:

x + x + 28 = 96,2x + 28 = 96.

Subtract 28 from both sides: 2x = 68.

Divide both sides by 2:

x = 34.

The smaller bucket has x = 34 balls.

The larger bucket has x + 28 = 34 + 28 = 62 balls.

The smaller bucket has 34 balls, and the larger bucket has 62 balls.

Q.10. Salma invested Rs. 3,50,000 in a bank which paid simple profit at a rate $7\frac{1}{4}$ % per annum. After 2 years, the

rate was increased to 8% per annum. Find the amount she has at the end of 7 years. **Sol.** P = Rs. 3,50,000 $R = 7\frac{1}{4}\%$ or 7.25% T = 2 years We know that $Profit = P \times T \times R$ $= 350.000 \times 2 \times 7.25\%$ $= 700,000 \times \frac{7.25}{100}$ $= 700,000 \times \frac{725}{100 \times 100}$ $= 70 \times 725$ = Rs. 50,750 Step (II): Finding the profit for 5 years P = Rs. 350,000R = 8%T = 5yearsWe know that $Profit = P \times T \times R$ $= 350,000 \times 5 \times 8\%$ =1,750,0 % $\frac{8}{100}$ = Rs. 140,000 Step (III): Finding the total profit: Total profit = Rs. (50,750 + 140,000)= Rs. 190,750 Step (IV): Finding the total amount: Total amount at the end of 7 years = Rs. 350,000 + 190,750 = Rs. 540,750