Graphs of Functions

Students' learning outcomes

UNIT

10

At the end of the unit, the students will be able to:

- Recall sketch graphs of linear functions (e.g. y = ax + b)
 - Plot and interpret the graphs of quadratic, cubic, reciprocal and exponential functions.
 - Graph $y = ax^n$ where *n* is +*ve* integer, -*ve* integer, rational number for x > 0 and a is any real number.
 - Graph $y = ka^x$, where x is real a > 1.
 - Discover exponential growth/decay of a practical phenomenon through its graph.
 - Determine the gradients of curves by drawing tangents.
 - Apply concepts of sketching and interpreting graphs to real-life problems (such as in tax payment, income and salary problems and cost and profit analysis)

Example 1: Sketch the graph of y = 2x - 1.

Solution: To sketch the graph of linear function, we can find its x and v intercepts.

Put x = 0, we get y = 5. So (0, -1) is the y-intercept.

Put
$$y = 0$$
, we get $x = \frac{1}{2}$. So $(\frac{1}{2}, 0)$

is the x-intercept.

The graph is a straight line that rises to the right because slope is positive.

Graph of Quadratic Functions

A quadratic function is a type of polynomial function that involves x2term. Its general form is: $y = ax^2 + bx + c$

Where a, b, c are constants and $a \neq 0$.

Example 2: Plot the graphs of $y = x^2$ and $y = -x^2$ on the same diagram. Solution: The following table shows several values of x and the given functions are evaluated at those values:

Siven				1
x	$y = x^2$	$y = -x^2$	(3. 9) * 8	(3.9)
3	$(-3)^2 = 9$	9		F /:
-2	$(-2)^2 = 4^n$	-4	(2,4) 4	(2.4)
1	$(-1)^2 = 1$	over the last of	(1.1)	(1.1)
0	$(0)^2 = 0$	0	(-1, -1) -2	11-11
1	$(1)^2 = 1$	1	(2.4) -4	(2, 4)
2	$(2)^2 = 4$	-4	4(-3, -9) 8	13. 9
3	$(3)^2 = 9$	-9	- 10	Y

- (i) Graph of $y = x^2$ represents parabola, passing through origin and opens upward.
- (ii) Graph of $y = -x^2$ represents parabola, passing through origin and opens downward.

Example 3: Sketch the graph of $y = 2x^2 - 7x - 9$ for $-3 \le x \le 6$. Solution: The values of x and y are given in the table and

sketched in figure below:

Graph of $y = 2x^2 - 7x - 9$ represents parabola and opens upward. It intersects the y-axis at (0, -9) and x-axis at (-1, 0) and (4.5, 0).

Graph of Cubic Functions

A cubic function is a type of polynomial function of degree 3. Its standard form is: $y = ax^3 + bx^2 + cx + d$

Where a, b, c, d are constants and $a \neq 0$.

Remember!
The graph of a cubic function is a curve that can have at most two turning points.
It has a general "S-shaped" appearance and depending on the coefficients, the shape may vary.
Such functions are much more complicated and show more varied behaviour than linear and quadratic ones.

Example 4: Plot the graph of the following cubic function for

-3 < x < 3:

Solution: The following table shows several values of x and the given function is evaluated at those values:

x	$y = -x^3$
-3	27
-2 .	8
-1	1
0	Ò
1	- I -
2	-8
3	-27

The curve passes through the origin.

The graph tells us that when x = 0, the function's value is -5.

Graph of Reciprocal Functions

A reciprocal function is a function of the form:

-5

1

25

1

2

3

a v =

Where a is any real number and $x \neq 0$.

Example 6: Sketch the graph of the following reciprocal function:

$$y = \frac{1}{x - 0.5}, x \neq 0.5$$

Solution: The following table shows several values of x and the given function is evaluated at those values:

Remember! An asymptote is a line that a graph approaches but never touches.

Graph of Exponential Functions $(y = ka^x)$ where x is real number, a > 1)

An exponential function is a mathematical function of the form:

$$y = ka$$

Where a, k are constants, x is variable and a > 1.

Example 7: Plot the graph of the exponential function $y = 2^x$ for $-6 \le x \le 6.$

Solution: The function $y = 2^x$ has base 2 and variable exponent x. Values of (x, y) are given in the table below:

he graph of $y = 2^x$ represents the growth curve.

Example 8: Plot the graph of the exponential function, $y = e^x$.

Solution: The function $y = e^x$ has base e and variable powers. We know e = 2.7182818, correct to two decimal places e = 2.72. Table of x and y values is given below.

Graphs of $y = ax^n$ (where *n* is +ve integer, -ve integer or rational number for x > 0 and *a* is any real number)

The graph of the function $y = ax^n$, where *n* is a positive integer, negative integer or rational number for x > 0 and *a* is any real number, exhibits distinct behaviours depending on the value of *n*. Following are the examples of these cases:

(i) When *n* is positive integer (n = 3)

Example 9: Plot the graph of $y = x^3$ for $-3 \le x \le 3$.

Solution: The table shows several values of x and the given function is evaluated at those values:

The curve passes through the origin.

(ii) When *n* is negative integer (n = -1)Example 10: Plot the graph of $y = x^{-1}$.

Solution:
$$y = x^{-1} = \frac{1}{x}$$

The above graph consists of two branches, one in the first quadrant and the other in the third quadrant. Both branches approach but never touch the x-axis or the y-axis.

(iii) When *n* is rational number $\left(n = \frac{1}{5}\right)$

Example 11: Plot the graph of $y = 2x^{\frac{1}{5}}$

Solution: $y = 2x^5$

The following table shows several values of x and the given function is evaluated at those values:

EXERCISE 10.1

1. Sketch the graph of the following linear functions:

$$(i) \qquad y = 3x - 5$$

Solution: y = 3x - 5

Step-I: Substitute the values of x in the given equation and find the corresponding values of y, as given below:

x	y	(x, y)
-1	- 8	(-1, -8)
0	-5	(0, - 5)
1	-2	(1, -2)
2		(2, 1)

Step-II: Select a suitable scale for graph like on x-axis, 1 division = 1 unit on y-axis, 1 division = 2 units. Step-III: Plot the points on the grid and join them to get the required graph as shown in figure.

(ii)
$$y = -2x + 8$$

Solution: $y = -2x + \delta$ Step-1: Substitute the value of x in the given equation and find the

respondente	x	y, as given e	
	-1	10	(-1, 10)
	0	8	(0, 8)
	1	6	(1, 6)
		4	(2, 4)
	2	0	(4, 0)
	4	le scale for p	manh like
TT Cale	et a suitab	le scale for	graph
ep-II: Seid			

Solution: y = 0.5x = 1Step-I: Substitute the values of x in the given equation and find solution. the corresponding values of y, as given below: (-2,-2) -2 (-1, -1.5) -2 -1.5 (0, -1)-1 -1 0 (1, -0.5)-0.5 1 (2, 0)0 (3, 0.5) 2 0.5 3 Step-II: Select a suitable scale for graph like On x-axis, 1 division = 1 unit 3 4 On y-axis 1 division -5 -4 -0.5 = 0.5 unit Step-III: Plot the points on the grid and join them -2.5 to get the required graph

-3.5

as shown in figure.

2. Plot the graph of the following quadratic and cubic functions:

(i)
$$y = x^3 + 2x^2 - 5x - 6; -3.5 \le x \le 2.5$$

Solution: $y = x^3 + 2x^2 - 5x - 6; -3.5 \le x \le 2.5$

Step-I: Substitute the values of x from -3.5 to 2.5 in the given equation and find the corresponding values of y, as given below:

x	V	(x, y)
2.5	9.6	(2.5, 9.6)
2	0	(2,0)
10	-8	(1,-8)
0	-6	(0,-6)
-1	0	(-1,0)
-2	4	(-2, 4)
-3	0	(-3, 0)
-3.5	-6.8	(-3.5, -6.8)

Step-II: Select a suitable scale for graph like

On x-axis, 1 division = 0.5 unit

On y-axis, 1 division = 2 units

Step-III: Plot the points on the grid and join them to get the required graph as shown in figure.

(ii) $y = x^2 + x - 2^{10}$ and radiate to depend DEL PUT (anctions: Step-I: Substitute the values of x in the given equation and find the corresponding values of y, as given below: Sicp-I: Sub y (-4,10) x equation and 10 (-3,4) -4 4 -3 (-2,0)0 -2 (-1, -2)-2 -1 (0, -2)-2 0 (1, 0)0 1 (2, 4) 4 2 (3, 10) 10 3

Step-II: Select a suitable scale for graph like

On - x-axis, 1 division = 1 unit

On - y - axis, 1 division = 2 unit

Step-III: Plot the points on the grid and join them to get the required graph as shown in figure.

(iii) $y = x^3 + 3x^2 + 2x; -2.5 \le x \le 0.5$

Solution: $y = x^3 + 3x^2 + 2x; -2.5 \le x \le 0.5$

Step-I: Substitute the values of x from -2.5 to 0.5 in the given equation and find the corresponding values of y, as given below:

x	V	(x, y)
-25	-1.8	(-2.5, -1.9)
-2	0	(-2, 0)
-1.5	0.4	(-1.5, 0.4)
-1	0	(-1, 0)
-0.5	-0.4	(-0.5, -0.4)
0	0	(0, 0)
0.5	1.8	(0.5, 1.8)

Step-II: Select a suitable scale for graph like

On x-axis, 1 division = 0.5 unit

On y-axis, 1 division = 0.5 unit

Step-III: Plot the points on the grid and join them to get the required graph as shown in figure.

noimisi

(iv) $y = 5x^2 - 2x - 3$ Solution: $y = 5x^2 - 2x - 3$ Step-I: Substitute the values of x in the given equation and find the corresponding values of y, as given below:

6	and the second second	(x, y)
x	y	(-2,21)
-2	21	
-1	4 ()	(-1,4)
0	-3	(0,-3)
0.5	-2.8	(0.5, -2.8)
1 1	0.0	(1,0)
2	13	(2, 13)

Step-II: Select a suitable scale for graph like

181201

On x-axis, 1 division = 1 unit not show of the normalized all-quit On y-axis, 1 division = 2 units Step-III: Plot the points on the grid and join them to get the required graph as shown in figure.

3. Plot the graph of the following functions:

(i) $y = 4^x$

Solution: $y = 4^x$

Step-I: Substitute the values of x in the given equation and find the corresponding values of y, as given below:

y	(x, y)
0.06	(-2, 0.06)
0.25	(-1, 0.25)
1	(0, 1)
2	(0.5, 2)
4	(1, 4)
8	(1.5, 8)
16	. (2, 16)
32	(2.5, 32)
	0.25 1 2 4 8 16

Step-II: Select a suitable scale for graph like On x-axis, 1 division = 0.5 unit

On y-axis, 1 division = 4 unit

Step-III: Plot the points on the grid and join them to get the required graph as shown in figure.

(ii) $y = 5^{-x}$ Step-I: Substitute the values of x in the given equation and find the corresponding values of y, as given below:

tollogial animalist

	$v = 5^x$	(x, y)
-2.5	56	(-2.5, 56)
-2.5	25	(-2, 25)
-2	5	(-1, 5)
0 11	rate - 1-	(0, -1)
1	0.2	(1, 0.2)
2	0.04	(2, 0.04)
3	0.008	(3, 0.008)

Step-II: Select a suitable scale for graph like

On x-axis, 1 division = 1 unit

On y-axis, 1 division = 10 unit

Step-III: Plot the points on the grid and join them to get the required graph as shown in figure.

(iii)
$$y = \frac{1}{x-3} x \neq 3$$

Solution:

118

Step-I: Substitute the values of x in the given equation and find the corresponding values of y, as given below:

	$y = \frac{1}{x - 3} x$	≠3
x	L V	(x, y)
-3	-0.16	(-3, -0.16)
-2	-0.2	(-2, -0.2)
-1	-0.25	(-1, -0.25)
0	-0.3	(0, -0.3)
1	-0.5	(1, -0.5)
2	-1	(2, -1)
3	00	(3,∞)
4	1	(4, 1)
5	0.5	(5, 0.5)
6	0.3	(6, 0.3)

Step-II: Select a suitable scale for graph like On x-axis, 1 division = 1 unit On y-axis, 1 division = 0.1 unit Step-III: Plot the points on the grid and join them to get the

required graph as shown in figure.

 $y = \frac{2}{x} + 3, x \neq 0$ (iv)

Solution:
$$y = \frac{2}{r} + 3$$
,

 $(x \neq 0)$

Step-I: Substitute the values of x in the given equation and find the corresponding values of y, as given below:

x	y y	(x, y)
10	2.8	(-10, 2.8)
-8	2.75	(-8, 2.75)
-6	2.66	(-6, 2.66)
-4	2.5	(-4, 2.5)
-2 .	2 ()-	(-2, 2)
-1	1	(-1, 1)
0	00	(0,∞)
1	5	(1, 5)
2	4	(2, 4)
4	3.5	(4, 3.5)
6	3.3	(6, 3.3)
8	3.25	(8, 3.25)
10	3.2	(10, 3.2)

Step-II: Select a suitable scale for graph like On x-axis, 1 division = 2 units On y-axis, 1 division = 1 unit

Step-III: Plot the points on the grid and join them to get the required graph as shown in figure.

 $y = x^{\frac{1}{2}}$ (v)

117

Aren-It bubshilled in

Solution: $y = x^2$

Step-I: Substitute the values of x in the given equation and find the corresponding values of y, as given below:

x	$y = x^{\frac{1}{2}} = \sqrt{x}$	(11.1)
0	$y - x^2 = \sqrt{x}$	(x, y)
	$y = \sqrt{0} = 0$	(0, 0)
1	$y = \sqrt{1} = 1$	(1, 1)
4	$y=\sqrt{4}=2.$	(4, 2)
9.	$y = \sqrt{9} = 3$	(9, 3)
16	$y = \sqrt{16} = 4$	(16, 4)
25	$y = \sqrt{25} = 5$	(25, 5)
36	$y = \sqrt{36} = 6$	(36, 6)

Step-II: Select a suitable scale for graph like On x-axis, 1 division = 4 units On y-axis, 1 division = 1 unit Step-III: Plot the points on the grid and join them to get the

required graph as shown in figure.

(vi) $y = 3x^{\frac{1}{3}}$

Solution: $y = 3x^{\frac{1}{3}}$ Step-I: Substitute the values of x in the given equation and find the corresponding values of y, as given below:

1019 x 1948	y y
-4	-4.8
-3	-4.3
-2	-3.8
-1	-3
0	0
1	3
2 .	3.8
3	3.8 4.3
4	4.8

Step-II: Select a suitable scale for graph like On x-axis, 1 division = 1 unit On y-axis, 1 division = 1 unit Step-III: Plot the points on the grid and join them to get the required graph as shown in figure.

STIL-state

(vii) $y = 2x^{-2}$

Solution: $y = 2x^{-2}$

Step-I: Substitute the values of x the given equation and find the corresponding values of y, as given below:

x	y	(x, y)
-4	• 0.13	(-4, 0.13)
-3	0.22	(4, 0.22)
-2	0.5	(-2, 0.5)
-1	2	(-1, 2)
0	8	(0, ∞)
1	2	(1, 2)
2	0.5	(2, 0.5)
3	0.22	(3, 0.22)

Step-II: Select a suitable scale for graph like On x-axis, 1 division = 1 unit On y-axis, 1 division = 0.5 unit **Step-III:** Plot the points on the grid and join them to get the

required graph as shown in figure.

Example 12: The population of a village was 753 in 2010. If the population grows according to the equation $p = 753e^{0.03t}$, where p is the number of persons in the population at time t, (a) Graph the population equation for t = 0 (in 2010) to t = 30 (in 2040). From the graph, estimate the population (i) in 2020 and (ii)

Solution: (a) The general shape of the exponential is known; however, since the graph is being used for estimations, an accurate graph over the required interval, t = 0 to t = 30, is

Calculate a table of values for different time periods and sketched :- fimme

in figure.	183 I	A P
1	p	
0	* 753	it 1500
5 .	874.9	a 1372 d 1200
10	1016.4	u 1800 i 1500 i 1500 i 1372 i 1372
15	1180.9	of 600
20	1372.1	Z 300
25	1594.1	+ 0 5
30	1852.1	2010 2015
	l	ropi

From graph, (b)

(b)

In 2020 (t = 10) the population is 1016 persons. (i)

In 2030 (t = 20) the population is 1372 persons. (ii)

Example 13: Sketch the graph of $y = x^2 - 3x - 2$ for values of x from -8 to 8, draw a tangent line at x = -6 and determine the gradient.

Solution: Calculate they-values for given values of x. The results are given in the table and sketched in below figure:

x	-8	-6	-A	-2	.0	2	4	6	8
y ·	86	52	26	8	-2	2 -A	2	16	38

Consider two points (-3, 10) and (-7, 70) on the tangent line.

So, gradient = $\frac{70-10}{-7+3} = -15$. Since the gradient is negative, this

indicates that the height of the graph decreases as the value of x increases.

Example 14: Majid's salary S(x) in rupees is based on the following formula: S(x) = 25000 + 1500x, where x is the number of years he worked. Sketch and interpret the graph of salary function for $0 \le x \le 10$.

Solution: Table values and graph are given below:

Majid's salary increases linearly with years of service and rises by Rs. 1500 for every year. **Example 15:** A company manufactures footballs. The cost of manufacturing x footballs is C(x) = 90,000 + 600x. The revenue from selling x footballs is R(x) = 1,800x. Find the break-even point and determine the profit or loss when 200 footballs are sold. Draw the graphs of both the functions and identify the break-even point.

Solution: Given that Cost function: C(x) = 90,000 + 600xRevenue function: R(x) = 1,800xThe break-even point occurs when R(x) = C(x)

1800x = 90000 + 600x1200x = 9000090000

 $x = \frac{1200}{1200}$ x = 75

=>

So, at the break-even point, 75 footballs are produced or sold. Next, we find the profit for 150 footballs When x = 150, revenue: R(150) = 1,800(150) = Rs. 270,000and C(150) = 90,000 + 600(150) = Rs. 180,000Now profit: P(x) = R(x) - C(x)Substitute x = 150 P(150) = R(150) - C(150) = Rs. 270,000 - Rs. 180,000 = Rs. 90,000

Thus, a company earns a profit of Rs. 90,000 when selling 150 footballs.

Table values and graph are given below:

1.

EXERCISE 10.2

Plot the graph of $y = 2x^2 - 4x + 3$ from -1 to 3. Draw tangent at (2, 3) and find the gradient.

Solution: $y = 2x^2 - 4x + 3$ **Step-I:** Substitute the values of x in the given equation and find the corresponding values of y, as given below:

Gradient: Draw a tangent line at point (2, 3). Take any two points on the tangent line. Let two points on the tangent line are: A(2, 3) and B(3, 7)

We know that

Gradient
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
 $m = \frac{7 - 3}{3 - 2} = \frac{4}{1} =$

Thus, gradient of tangent line is 4.

2. Plot the graph of $y = 3x^2 + x + 1$ and draw tangent at (1, 5). Also find gradient of the tangent line at this point.

Solution: $y = 3x^2 + x + 1$

Step-I: Substitute the values of x in the given equation and find the corresponding values of y, as given below:

x	у	(x, y)
-2	11	(-2, 11)
-1	3	(-1, 3)
0	1	(0, 1)
1	5	(1, 5)
2	15	(1, 5)

Step-II: Select a suitable scale for graph like On x-axis, 1 division = 0.5 unit On y-axis, 1 division = 2 units Step-III: Plot the points on the grid and join them to get the

required graph as shown in figure.

Gradient: Draw a tangent line at point (1, 5). Take any two points on the tangent line. Let two points on the tangent line are: A(1,5)and B(2, 12)We know that

Gradient
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

 $m = \frac{12 - 5}{2 - 1} = \frac{7}{1} = 7$

Thus, gradient of tangent line is 7.

- 3. The strength of students in a school was 1000 in 2016. If the strength decay according to the equation $S = 1000 e^{-t}$, where S is the number of students at time t.
- (a) Graph the given equation for t = 0 (in 2016) to t = 9 (in 2025).
- (b) From the graph, estimate the student's strength in 2019 and in 2023.

		1000	
Solution: (4	a) $S = 1000 e^{-t}$ Or	$S = \frac{1000}{e^{1}}$ "t" in the given equation signature below:	and find
Step-I: Sub	stitute the values of nding values of S, a 2016. (t = 0)	given below:	
the correspo	nullig value	1000	
		367.9≈300	
	2017, (t = 1)	135.3 ≈ 135	·
	2018, (t = 2)	49.8 ≈ 50	
	2019, (t = 3)	18.3 ≈ 18	
	2020, (t = 4)	6.7 ≈ 7	
	2021, (t = 5)	2.48 ≈ 3	
	2022, (t=6)	<u>0.91 ≈ 1</u>	
	2023, (t = 7)	0.33 ≈ 0	
영화, 지방 문	2024, (t = 8)		
	2025, (t = 9)	0.12 ≈ 0	

Step-II: Select a suitable scale for graph like On x-axis, 1 division = t = 1 unit (year)

On y-axis, 1 division = 200 units

Step-III: Plot the points on the grid and join them to get the required graph as shown in figure.

Solution: (b)

The estimated student's strength in 2019 is 50.

The estimated student's strength in 2023 is 1.

The demand and supply functions for a product are given by the equations $P_d = 400 - 5Q$, $P_s = 3Q + 24$:

Plot the graph of each function over the interval

Q = 0 to Q = 300.

4.

Solution: Pd = 400 - 5Q and P(s) = 3Q + 24The interval (Q = 0 to Q = 300)

Step-I: Substitute the values of "Q" in the given equation and find the corresponding values of Pd and Ps, as given below:

Q	Pd = 400 - 5Q	Ps = 3Q + 24
0	400	24
. 50	150	174
· 100	- 100	324
150	- 350	474
200	- 600	624
250	- 850	774
300	- 1100	924

Step-II: Select a suitable scale for graph like

On x-axis, 1 division = 50 units

On y-axis, 1 division = 200 units

Step-III: Plot the points on the grid and join them to get the required graph as shown in figure.

Shahid's salary S(x) in rupees is based on the following

formula: S(x) = 45000 + 4500xwhere x is the number of years he has been with the company. Sketch and interpret the graph of salary function

for $0 \le x \le 5$.

5.

S(x) = 45000 + 4500x and $0 \le x \le 5$ Step-I: Substitute the values of "x" in the given function S(x) and find the corresponding values of S(x), as given below:

(x) 5000
500
000
3500
3000
7500

Step-II: Select a suitable scale for graph like On x-axis, 1 division = 1 unit On y-axis, 1 division = 10000 units

Step-III: Plot the points on the grid and join them to get the

required graph as shown in figure.

Interpretation of Salary Graph: The graph shows that Shahid's starting salary is Rs. 45,000. After 1 year Shahid's salary increases by Rs. 4500.

6. A company manufactures school bags. The cost function of producing x bags is C(x) = 1200 + 20x and the revenue from selling x bags is R(x) = 50x.

Find the break-even point. **(a)**

- Determine the profit or loss when 250 bags are sold. (b)
- Plot the graphs of both the functions and identify the (c) break-even point.

Solution: (a) The break-even point is no profit or loss. It happens when total cost and revenue are equal.

> R(x) = C(x)50x = 1200 + 20x50x - 20x = 120030x = 12001200 = 40 x = '

The company reaches at breakeven point at the production

of 40 bags.

Solution: (b)

Since break-even is at 40 bags. Surely it will be profit at 250 bags.

Profit = R(x) - C(x)Profit = 50x - (1200 + 20x)= 50x - 1200 - 2x= 30x - 1200Put x = 250 in profit function

Profit = 30(250) - 1200

$$= 7500 - 1200 = 6300$$

Solution: (c) R(x) = 50x and C(x) = 1200 + 20x**Step-I:** Substitute the values of "x" in given function S(x) and find the corresponding values of S(x), as given below:

x	R(x) = 50x	C(x) = 1200 + 20x
0	0	1200
10	500	1400
	1000	1600
20	1500	1800
30	2000	- 2000
40	2500	2200
50		2400
60	3000	

Step-II: Select a suitable scale for graph like On x-axis, 1 division = 10 units On y-axis, 1 division = 200 units Step-III: Plot the points on the grid and join them to get the required graph as shown in figure.

7. A newspaper agency fixed cost of Rs. '70 per edition and marginal printing and distribution costs of Rs. 40 per copy. Profit function is p(x) = 10x - 70, where x is the number of newspapers. Plot the graph and find profit for 500 newspapers.

Solution: p(x) = 10x - 70**Step-I:** Substitute the values of "x" in the given function S(x) and find the corresponding values of S(x), as given below:

p(x)
- 70
930
1930
2930
3930
4930
5930

Step-II: Select a suitable scale for graph like On x-axis, 1 division = 100 units On y-axis, 1 division = 1000 units Step-III: Plot the points on the grid and join them to get the required graph as shown in figure.

Finding the profit:

Profit function is p(x) = 10x - 70, Put x = 500 in p(x) p(500) = 10(500) - 70 p(500) = 5000 - 70 p(500) = 4,930Thus, profit for 500 newspapers is Rs. 4930.

8. Ali manufactures expensive shirts for sale to a school. Its cost (in rupees) for x shirts is $C(x) = 1500+10x+0.2x^2$, $0 \le x \le 150$. Plot the graph and find the cost of 200 shirts.

Solution: Plotting the Graph:

Step-I: Substitute the values of "x" in the given function C(x) and find the corresponding values of C(x), as given below: $C(x) = 1500 + 10x + 2.0x^{2}$ and $0 \le x \le 1500$

x	C(x)
0	1500
25	1875
50	2500
75	3375
100	4500
125	5875
150	7500

Step-II: Select a suitable scale for graph like

On x-axis, 1 division = 25 units On y-axis, 1 division = 1500 units **Step-III:** Plot the points on the grid and join them to get the required graph as shown in figure.

Finding the Cost:

 $C(x) = 1500 + 10x + 0.2x^{2}$ Put x = 200

20000	[
18000	1 f	
6000		
14000		
12000		
10000		
8000		
6000		
4000	//	
2000	·	
0	100 200 300 400	

(viii)	y =	5' is	andraight restoration	fu	nction				
	(a)	line	ear			(b)	quad	ratic	
	(c)	cub	oic			(d)	expo	nential	
(ix)	Rec	iprocal	functi	on is:					
	(a)	<i>y</i> =	7 ^x			(b)	$y = \frac{2}{x}$ $y = 5x$	1	
	(c)	<i>y</i> =	$2x^2$		C	(d)	y = 5x	r ³	
(x)	y = -	$-3x^3 + 7$	is			nction.			
	(a)	exp	onenti	al			cubic		
	(c)	line	ar		1	(d)	recipr	ocal	
A	ore.						-		1
Answ	c/3.								
Answ (i)	(d)	(ii)	(c)	(iii)	(c)	(iv)	(a)	(v)	(a)
(i)	(d) (b)	(vii)	(a)	(viii)	(d)	(ix)	(b)	·(x)	(a) (b)
(i) (vi)	(d) (b)		(a)	(viii)	(d)	(ix)	(b)	·(x)	Server and and and
(i) (vi) 2.	(d) (b) Plot	(vii) the gra	(a) aph of	(viii) the fo	(d) Ilowin	(ix)	(b)	·(x)	Server and and and
(i) (vi) 2. (i)	(d) (b) Plot y = 3	(vii) the gra	(a) aph of a from	(viii) the fo	(d) Ilowin	(ix)	(b)	·(x)	Server and and and
(i) (vi) 2. (i) Soluti	(d) (b) Plot y = 3 ion:	(vii) the gra 3-x for x y = 3	(a) aph of x from $3^{-3} = \frac{1}{3^{2}}$	(viii) the fo -2 to	(d) Nowin 4	(ix) ng func	(b) tions:	(X)	(b)
(i) (vi) 2. (i) Soluti	(d) (b) Plot y = 3 ion:	(vii) the gra 3-x for x y = 3	(a) aph of x from $3^{-3} = \frac{1}{3^{2}}$	(viii) the fo -2 to	(d) Nowin 4	(ix) ng func	(b) tions:	(X)	(b)
(i) (vi) 2. (i) Soluti	(d) (b) Plot y = 3 ion: I: Sub:	(vii) the graves 3^{-x} for $y = 3^{-x}$ stitute t	(a) aph of aph of aph of aph of $3^{-3} = \frac{1}{3^3}$ he value	(viii) the fo -2 to	(d) Ilowin 4 *x" in	(ix) ing func the giv	(b) tions:	(X)	(b)
(i) (vi) 2. (i) Soluti	(d) (b) Plot y = 3 ion: I: Sub:	(vii) the graves y=2 stitute to nding v	(a) aph of aph of aph of aph of $3^{-3} = \frac{1}{3^3}$ he value	(viii) the fo 1-2 to tes of of y, as	(d) Nowin 4 *x" in given	(ix) ing func the giv	(b) tions:	(x)	(b)
(i) (vi) 2. (i) Soluti	(d) (b) Plot y = 3 ion: I: Sub:	(vii) the graph 3^{-x} for x $y = 3^{-x}$ stitute the ending volume x	(a) aph of aph of aph of aph of $3^{-3} = \frac{1}{3^3}$ he value	(viii) the fo 1-2 to thes of ' of y, as	(d) Ilowin 4 *x" in	(ix) ing func the giv	(b) tions: en fun	(x)	(b)
(i) (vi) 2. (i) Soluti	(d) (b) Plot y = 3 ion: I: Sub:	(vii) the graph y = 3 stitute the the the the the the the the the t	(a) aph of aph of aph of aph of $3^{-3} = \frac{1}{3^3}$ he value	(viii) the fo -2 to ues of ' of y, as y=	(d) Ilowin 4 'x" in given :3-4	(ix) ing func the giv	(b) tions: en fun	(x) ction a	(b)
(i) (vi) 2. (i) Soluti	(d) (b) Plot y = 3 ion: I: Sub:	(vii) the graph 3^{-x} for x $y = 3^{-x}$ stitute the ending volume x	(a) aph of aph of aph of aph of $3^{-3} = \frac{1}{3^3}$ he value	(viii) the fo -2 to nes of ' of y, as	(d) Ilowin 4 x" in given 3 ⁻⁴ 9	(ix) ing funce the give below	(b) tions: en fun ((x, y) (-2, 9	(x) ction a	(b)

 $\frac{1}{3} = 0.33$ $\frac{1}{9} = 0.11$ $\frac{1}{9} = 0.11$ $\frac{1}{27} = 0.03$ $\frac{1}{27} = 0.03$ $\frac{1}{81} = 0.01$ (4, 0.01)

Step-II: Select a suitable scale for graph like On x-axis, 1 division = 1 unit On y-axis, 1 division = 1 unit

Solution:

 $y = \frac{2}{2}$

Step-I: Substitute the values of "x" in the given function and find the corresponding values of y, as given below:

	$y = \frac{2}{x}$
-8	-0.25 -0.33 -0.5
-6	-0.33
-4	-0.5
-2	-1
-1	-2
0	undefined
	2
2	1
4	0.5
• 6	0.33
8	0.25

Step-II: Select a suitable scale for graph like On x-axis, 1 division = 2 units On y-axis, 1 division = 0.5 unit

Step-III: Plot the points on the grid and join them to get the required graph as shown in figure.

Sales for a new magazine are expected to grow according to the equation: $S = 200000 (1 - e^{-0.05t})$, where t is given in weeks.

Plot graph of sales for the first 50 weeks. (a)

Solution: (a) Graph for First 50 weeks:

Step-I: Substitute the values of "t" in the given function and find the corresponding values of S, as given below:

 $S = 200000 (1 - 2^{-0.05t}) (t \text{ is time in weeks})$

We know that $.e \approx 2.718 \approx 2.72$

$ \begin{array}{r} 00000 (1 - e^{-0.05t}) \\ 0 \\ 44239 \\ 78694 \\ 105527 \\ 126424 \\ 142699 \\ \end{array} $
78694 105527 126424
105527 126424
126424
And the second
142699
155374
165245
172932
178920
183583

4. Plot the graph of following for x from -5 to 5: (i) $y = x^2 - 3$ Solution: $y = x^2 - 3$

Step-I: Substitute the values of "x" in the given function and find the corresponding values of y, as given below:

and the first state of the second state of the		
x	$y = x^2 - 3$	(x, y)
-5	22	(-5, 22)
-4	13	(-4, 13)
-3	6	(-3, 6)
-2		(-2, 1)
-1	-2	(-1, -2)
0	-3 .	(0, -3)
	-2	(1, -2)
2	1	(2,.1)
3	6,	(3, 6)
. 4	13	(4, 13)
; 5	22	(5, 22)

Step-II: Select a suitable scale for graph like

On x-axis, 1 division = 1 unit

On y-axis, 1 division = 2 units

Step-III: Plot the points on the grid and join them to get the required graph as shown in figure.

(ii) $y = 15 - x^2$

Step-I: Substitute the values of "x" in the given function and find

the corresponding values of y, as given below: (x, y) $y = 15 - x^2$ (-5, -10)x -10 -5 (-4, -1) -1 -4 (-3, 6)6 . -3 (-2, 11) 11 -2 (-1, 14)14 -1 (0, -15)-15 0 (1, 14)14 1 (2, 11)11 2 (3, 6) 6 3 (4, -1) ... -1 4 (5, -10)-10 5

Step-II: Select a suitable scale for graph like

On x-axis, 1 division = 1 unit

On y-axis, 1 division = 2 units

Step-III: Plot the points on the grid and join them to get the required graph as shown in figure.

Plot the graph of $y = \frac{1}{2} (x + 4)(x - 1)(x - 3)$ from -5 to 4. 5.

Solution: $y = \frac{1}{2}(x+4)(x-1)(x-3)$

Step-I: Substitute the values of "x" in the given function and find the corresponding values of y, as given below:

	general and the second second	the second in the second
x	y	(x, y)
-4	0	(-4,0)
-3	12	(-3,12)
-2	15	(-2,15)
-1	12	(-1,12)
0	6	(0, 6)
• 1	0	(1, 0)
2	-3	(2, -3)
3	. 0	(3, 0)
4	12	(4, 12)

Step-II: Select a suitable scale for graph like On x-axis, 1 division = 1 unit On y-axis, 1 division = 3 units Step-III: Plot the points on the grid and join them to get the required graph as shown in figure.

(i) $\begin{array}{l} market are provided and provided are provided $		ction over the inte	erva
Cham Is Shinshillury	10 00		
Step-1: Substitute	values of P_s and P_s , as	Pd	
the corresponding	Ps	<u>Pa</u> 600 -	
the corresponding	Ps 0 405	1 4	
he corresponding	Ps 0 405 5 230	600 - 375	
he corresponding Q - 20 - 15		600 - 375 200	
he corresponding $ \begin{array}{c} $	Ps 0 405 5 230 0 150 30 30	600 - 375 200 75	
he corresponding	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1a 600 - 375 200 75 0	
he corresponding <u>Q</u> <u>-20</u> <u>-15</u> <u>-10</u> <u>-5</u> <u>0</u>	Ps 0 405 5 230 0 150 30 30	$ \begin{array}{r} 1a \\ 600 \\ - 375 \\ 200 \\ 75 \\ 0 \\ -25 \\ -25 \\ - 2$	
he corresponding $ \begin{array}{r} $		$ \begin{array}{r} 1a \\ 600 \\ 375 \\ 200 \\ 75 \\ 0 \\ -25 \\ 0 \end{array} $	
he corresponding 	$ \begin{array}{c ccccc} P_s \\ \hline 0 & 405 \\ \hline 5 & 230 \\ \hline 5 & 230 \\ \hline 5 & 30 \\ \hline & 30 \\$	$ \begin{array}{r} 1a \\ 600 \\ - 375 \\ 200 \\ 75 \\ 0 \\ -25 \\ -25 \\ - 2$	

On x-axis, 1 division = 5 units

On y-axis, 1 division = 100 units

Step-III: Plot the points on the grid and join them to get the required graph as shown in figure.

A television manufacturer company make 40 inches LEDs. The cost of manufacturing x LEDs is C(x) = 60,000 + 250x and the revenue from selling x LEDs is R(x) = 1200x. Find the break-even point and find the profit or loss when 100 LEDs are sold. Identify the break-even point graphically.

Solution: Finding Break-even point:

7.

The break-even point means no profit or loss. It happens when total cost and revenue are equal.

$$R(x) = C(x)$$

$$1200x = 60,000 + 250x$$

$$1200x - 250x = 60,000$$

$$950x = 60,000$$

$$x = \frac{60000}{950} = 63.16 \approx 63$$

Since break-even is at approximately 64 LEDs. Surely it will be profit on selling 100 LEDs.

Profit = R(x) - C(x)Profit = (1200x) - (60,000 + 250x)= 1200x - 60,000 - 250x= 950x - 60,000Put the x = 100 in the profit function. Profit = 950(100) - 60,000= 95000 - 60,000= 35,000

Plotting the graph:

C(x) = 60,000 + 250x, R(x) = 1200x

a sea a s	C(x)	(x, y)
0	60,000	(0, 0)
20	65,000	24,000
40	70,000	48,000
60	75,000	72,000
80	80,000	96,000
100	85,000	
120	90,000	in a state in the

Step-II: Select a suitable scale for graph like 121.00

On x-axis, 1 division = 20 units

On y-axis, 1 division = 20,000 units

Step-III: Plot the points on the grid and join them to get the required graph as shown in figure.

CHERICA DOWERS