9th Class Chemistry Chapter # 7 Exercise Solutions – **Punjab Board Acid base Chemistry Multiple Choice Questions (MCQs)**

(i) Which acid is not used as a food or mixed with food?

Options:

- (a) Tartaric acid •
- (b) Acetic acid
- (c) Citric acid
- (d) Formic acid •

Correct Answer: (d) Formic acid

Explanation:

Formic acid is toxic and not used in food. The other acids are commonly found in foods or used as preservatives/flavouring agents.

(ii) While baking, which gas is responsible for raising the bread and making it soft?

Options:

- (a) Oxygen •
- (b) Carbon dioxide
- (c) Nitrogen •
- (d) Carbon monoxide •

Correct Answer: (b) Carbon dioxide

Explanation:

Baking powder or baking soda reacts to produce CO2 gas, which forms bubbles and causes the dough to rise and soften.

(iii) Predict the main characteristics of the reactions of metals with acids.

Options:

- (a) Metals are dissolved •
- (b) Metals are converted into salts
- (c) Hydrogen gas is evolved
- (d) All the above mentioned characteristics are true

Correct Answer: (d) All the above mentioned characteristics are true

Explanation:

Acids react with metals to:

- Dissolve the metal •
- Form a salt
- Release hydrogen gas •

(iv) How many hydroxide ions, calcium hydroxide will release in water?

Options:

- (a) 1
- (b) 2
- (c) Zero
- (d) 3

Correct Answer: (b) 2

Explanation:

Calcium hydroxide Ca(OH)2is a strong base and releases 2 OH⁻ ions per formula unit in aqueous solution.

(v) In a neutralization reaction between KOH and H₃PO₄, how many molecules of KOH will react with one molecule of H₃PO₄?

Options:

(a) 2 • • (b) 1 (c) 3 • • (d) 4 Correct Answer: (c) 3

Explanation:

Phosphoric acid H3PO4 is a **triprotic acid** (releases 3 H⁺). Potassium hydroxide KOH provides **1 OH⁻** per molecule. So, **3 KOH molecules** are required to neutralize 1 H₃PO₄.

(vi) Which acid is used in the preparation of soap?

Options:

- (a) Tartaric acid
- (b) Citric acid
- (c) Acetic acid
- (d) Oleic acid

Correct Answer: (d) Oleic acid

Explanation:

Soap is made by **saponification** of fats and oils, which often contain **oleic acid**, a **fatty acid**.

(vii) Which compound is formed when SO₂ is dissolved in water?

Options:

- (a) SO₃
- (b) H₂SO₃
- (c) H₂SO₄
- (d) H₂S₂O₃

Correct Answer: (b) H₂SO₃

Explanation:

Sulphur dioxide SO2 dissolves in water to form sulphurous acid:

 $SO2+H2O \rightarrow H2SO3$

(viii) Which of the following contains oxalic acid?

Options:

- (a) Tomato
- (b) Orange
- (c) Tamarind
- (d) Sour milk

Correct Answer: (a) Tomato

Explanation:

Tomatoes are rich in oxalic acid, which gives them a slightly sour taste.

(ix) Which compound in the following reaction is behaving as a conjugate base?

CH3COOH(aq)+H2O(I)⇒CH3COO+H3O

Options:

- (a) CH₃COOH
- (b) H₂O
- (c) CH₃COO⁻
- (d) H₃O⁺

Correct Answer: (c) CH₃COO⁻

Explanation:

CH₃**COO**⁻ is formed when **CH**₃**COOH** donates a proton (H⁺), so it acts as the **conjugate base** of the acid.

(x) When a chemical reaction is carried out with a substance Z, a gas is produced which turns red litmus paper blue. What is the reaction?

Options:

- (a) Reaction of an acid with a metal carbonate
- (b) Reaction of an acid with metal hydrogen carbonate
- (c) Reaction of an alkali with an acid

• (d) Reaction of an alkali with ammonium salt

Correct Answer: (d) Reaction of an alkali with ammonium salt

Explanation:

This reaction produces **ammonia gas (NH₃)**, which is **basic** in nature and turns **red litmus blue**.

Questions for Short Answers

i. Choose Arrhenius Acids among the following compounds:

 $\mathsf{HF}, \mathsf{NH}_3, \mathsf{H}_2\mathsf{SO}_4, \mathsf{SO}_3, \mathsf{H}_2\mathsf{S}, \mathsf{H}_2\mathsf{O}$

Answer:

According to Arrhenius definition, an acid is a substance that increases the concentration of H^+ (or H_3O^+) ions in aqueous solution.

Arrhenius acids among the given are:

- **HF** (hydrofluoric acid)
- H₂SO₄ (sulphuric acid)
- H₂S (hydrosulphuric acid)

Not acids (as per Arrhenius):

- NH₃ Base (gives OH⁻ in water indirectly)
- SO_3 Acidic oxide, not an acid itself until it reacts with water
- H_2O Neutral, acts as both acid or base depending on conditions

ii. How does calcium metal react with dilute H₂SO₄?

Answer:

Calcium metal reacts with dilute sulphuric acid (H_2SO_4) to form calcium sulphate (CaSO₄) and hydrogen gas (H_2) .

 $Ca(s)+H2SO4(aq)\rightarrow CaSO4(aq)+H2(g)$

Observation:

- Effervescence of hydrogen gas is seen. •
- It's an example of metal + acid \rightarrow salt + hydrogen reaction. •

iii. Which salt is formed when HCl reacts with BaCO₃?

Answer:

When hydrochloric acid (HCI) reacts with barium carbonate (BaCO₃), the products are:

- **Barium chloride (BaCl₂)** ٠
- Water (H₂O) •

• Carbon dioxide (CO₂) BaCO3+2HCI→BaCl2+H2O+CO2↑

Salt formed: Barium chloride (BaCl₂)

iv. How will you justify that HSO₄⁻ is a Bronsted-Lowry acid?

Answer:

According to the Bronsted-Lowry definition, an acid is a substance that donates a proton (H⁺).

 HSO_4^- can lose a proton to form SO_4^{2-} :

HSO4-⇒H++SO42

Since it donates H⁺, it behaves as a Bronsted-Lowry acid.

Conclusion: HSO₄⁻ is a **weak acid** that donates a proton, fitting Bronsted-Lowry definition.

v. Why is HCI not edible although it is present in the stomach and responsible for digestion of food?

Answer:

Hydrochloric acid (HCI) in the stomach:

- Helps in digestion by activating enzymes and breaking down food.
- It is present in very dilute form (around 0.5%–1%) in gastric juice.

But concentrated HCI is:

- Corrosive and highly acidic
- Can burn tissues, damage mouth and esophagus, and is dangerous to health

Conclusion: HCl is not edible in its concentrated form because it is harmful and corrosive, though a dilute amount naturally exists in the stomach for digestion.

Constructed Response Questions

i. What chemical name will you give to soap as a compound?

Answer:

Soap is chemically a salt of a fatty acid.

When a fat or oil reacts with sodium hydroxide (NaOH) during saponification, it produces sodium salt of long-chain fatty acid — commonly called soap.

Chemical name of soap: Sodium stearate ($C_{17}H_{35}COONa$) – if made from stearic acid.

Conclusion: Soap is generally a sodium or potassium salt of a fatty acid.

ii. In the presence of a drop of an acid, water is known to ionize as follows:

H2O ⇒H++OH-

In your opinion, which name will be suitable for water: an acid, a base, or both?

Answer:

Water is a neutral molecule, but it can donate or accept a proton (H⁺) depending on what it reacts with.

- In presence of a strong acid, water accepts $H^+ \rightarrow$ acts as a base
- In presence of a strong base, water donates $H^+ \rightarrow$ acts as an acid

Conclusion:

Water is **amphoteric**, i.e., it behaves as **both acid and base**, depending on the reacting substance.

iii. Why does Na₂CO₃ behave like a base in water?

Answer:

Sodium carbonate (Na₂CO₃) dissociates in water to give:

Na2CO3→2Na++CO32-

The carbonate ion (CO₃²⁻) is a weak base and reacts with water to form OH⁻ ions:

CO3+H2O⇒HCO3+OH

This increase in OH⁻ ions makes the solution basic.

Conclusion:

Na₂CO₃ behaves like a **base** because it produces **hydroxide ions (OH⁻)** in water due to hydrolysis.

iv. Is NaHCO₃ a base or an acid? Justify your answer.

Answer:

Sodium hydrogen carbonate (NaHCO₃), also called baking soda, is a basic salt.

It comes from a strong base (NaOH) and a weak acid (H₂CO₃).

In water:

NaHCO3⇒Na++HCO3

Then:

HCO3-+H2O⇒H2CO3+OH

This reaction releases OH⁻ ions, making the solution basic.

Conclusion: NaHCO₃ is a weak base, as it produces OH^- ions in water. However, it can also act as a weak acid in the right conditions, so it is amphiprotic but mostly basic in water.

v. What is the difference between a strong acid and a concentrated acid?

Answer:

Strong Acid	Concentrated Acid
Completely ionizes in water	Has less water (more acid per unit volume)
Depends on chemical strength	Depends on amount of acid in solution
Example: HCl (strong even if dilute)	Example: Glacial acetic acid (concentrated but weak)

- A strong acid refers to the degree of ionization.
- A concentrated acid refers to the amount of acid present in a given volume.
 Descriptive Questions
- i. Explain Arrhenius concept of acids and bases.

Answer:

Arrhenius Concept (1884) defines acids and bases based on ionization in water:

- Arrhenius Acid: A substance that increases H⁺ ions (or H₃O⁺) in aqueous solution.
 - Example: HCI→H++CI-
- Arrhenius Base: A substance that increases OH⁻ ions in aqueous solution. Example: NaOH→Na++OH-

Limitation:

- Only applies to aqueous solutions.
- Cannot explain basic nature of substances like NH₃.

ii. Compare Arrhenius and Bronsted-Lowry concepts of acids and bases.

Answer:

Property	Arrhenius Concept	Bronsted-Lowry Concept
Acid	Produces H ⁺ in water	Donates a proton (H ⁺)
Base	Produces OH [−] in water	Accepts a proton (H ⁺)

Property	Arrhenius Concept	Bronsted-Lowry Concept
Medium	Only aqueous	Any solvent or gas phase
Example Acid	$HCl \rightarrow H^+ + Cl^-$	HCl donates H ⁺ to H ₂ O
Example Base	$NaOH \rightarrow Na^+ + OH^-$	$NH_3 + H_2O \rightarrow NH_4^+ + OH^-$
Limitation	Only OH ⁻ bases allowed	Covers more acid-base pairs

Bronsted–Lowry theory is **broader** and explains acid–base behavior in **non-aqueous media** too.

v. State the reason of showing acidic character by both dry HCI gas and HCI solution in water.

Answer:

- Dry HCI gas is not acidic it does not ionize in the absence of water.
- In water, HCl ionizes completely: HCl+H2O→H3O++Cl-
 - It shows acidic character (turns blue litmus red, reacts with metals, etc.)

Conclusion:

Only aqueous HCI acts as an Arrhenius acid. Dry HCI gas doesn't show acidic properties until it dissolves in water and releases H⁺ ions.

vi. Differentiate between an acid and its conjugate base.

Answer:

Acid	Conjugate Base
Donates a proton (H ⁺)	Formed after acid loses a proton
Strong acid \rightarrow weak conjugate base	Weak acid \rightarrow strong conjugate base
Example: HCl (acid)	Cl ⁻ (conjugate base)
Example: CH ₃ COOH	CH ₃ COO ⁻

When an acid **loses a proton**, it becomes its **conjugate base**, capable of **accepting a proton** in the reverse reaction.

Investigative Questions

i. Acids play significant roles within human body. Comment on this statement.

Answer:

Yes, acids play essential and diverse roles in the human body. Some key examples include:

1. Hydrochloric Acid (HCI) in the stomach:

- Secreted by gastric glands.
- Helps in digestion of food by:
 - Activating enzymes like pepsin.
 - Killing harmful microorganisms.
 - Maintaining an acidic pH (~1.5–3.5) for proper digestion.

2. Amino acids:

- Building blocks of **proteins**, essential for growth and repair.
- Each amino acid contains an acidic group (-COOH).

3. Fatty acids:

 Components of lipids, important for energy storage and cell membrane structure.

4. Nucleic acids (DNA and RNA):

- Carry genetic information.
- Composed of phosphoric acid, sugars, and nitrogenous bases.

Conclusion:

Acids are vital for digestion, metabolism, energy production, and genetic function in the human body.

ii. What is observed when CO₂ is passed through lime water:

(i) for a short duration (ii) for a long duration

Answer:

Chemical used: Lime water is a dilute solution of calcium hydroxide: Ca(OH)₂

(i) For a short duration:

CO2+Ca(OH)2→CaCO3↓+H2O

- Calcium carbonate (CaCO₃) forms as a white precipitate.
- Observation: Lime water turns milky.

(ii) For a long duration:

CaCO3+CO2+H2O→Ca(HCO3)2

- The white precipitate dissolves and solution becomes clear again.
- This is due to formation of calcium hydrogen carbonate (soluble).

- Short duration → Milky appearance (due to CaCO₃)
- Long duration \rightarrow Milkiness disappears (due to formation of soluble Ca(HCO₃)₂)