Exercise 1.1

Q.1 Identify each of the following as a rational or irrational numbers:

Solution:

Rational numbers

- (i) 2.353535
- (ii) 0.6
- (ix) $\frac{15}{4}$
- (x) $(2-\sqrt{2})(2+\sqrt{2})$

Irrational numbers

- (iii) 2.236067..
- (iv) $\sqrt{7}$
- (v) e
- (vi) π

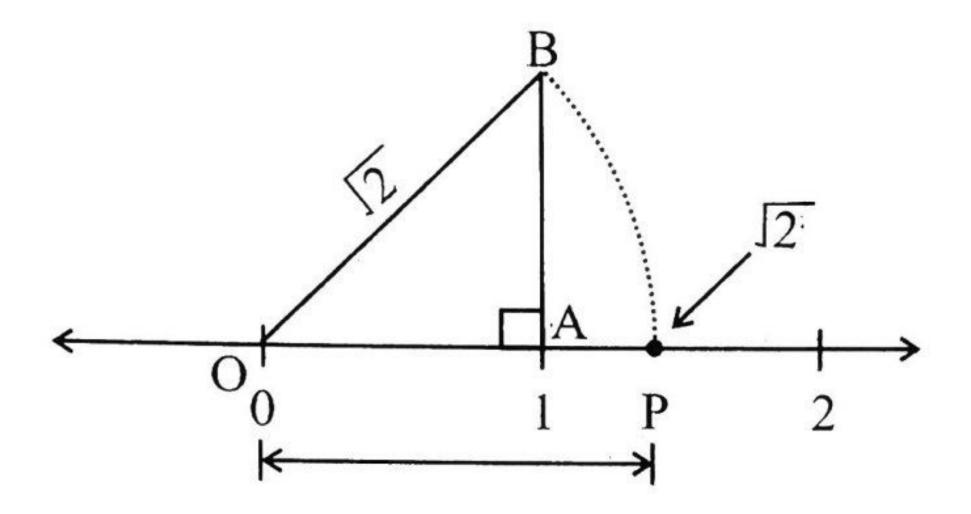
- (vii) $5 + \sqrt{11}$
 - (viii) $\sqrt{3} + \sqrt{13}$

Q.2 Represent the following numbers on number line:

(i) $\sqrt{2}$

Solution:

 $\sqrt{2}$ can be located on the real line by geometric construction. Mark a perpendicular line of $m\overline{AB} = 1$ unit at A, where $m\overline{OA} = 1$ unit, and we have a right-angle triangle OAB. By using Pythagoras theorem


$$(m\overline{OB})^{2} = (m\overline{OA})^{2} + (m\overline{AB})^{2}$$

$$\sqrt{(m\overline{OB})^{2}} = \sqrt{(m\overline{OA})^{2} + (m\overline{AB})^{2}}$$

$$m\overline{OB} = \sqrt{(1)^{2} + (1)^{2}}$$

$$= \sqrt{1+1}$$

$$= \sqrt{2}$$

Taking O as centre, draw an arc of radius $m \overline{OB} = \sqrt{2}$ Which cut the number line at P. W e get point "P" representing $\sqrt{2}$ on the number line

So,
$$|\overline{OP}| = \sqrt{2}$$

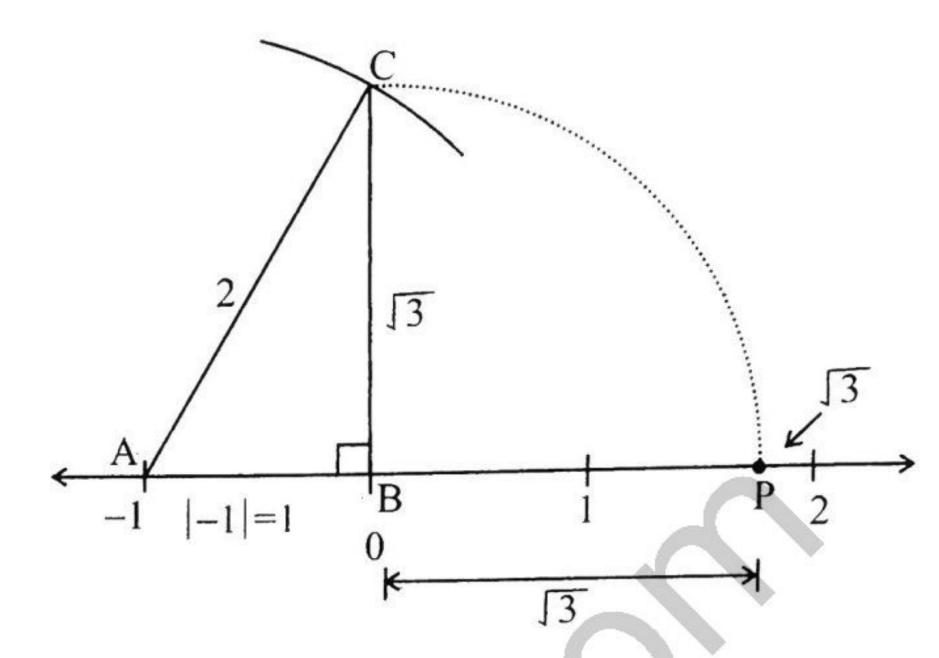
(ii)
$$\sqrt{3}$$

Solution:

 $\sqrt{3}$ can be located on the real line by geometric method. Mark a line of $m\overline{AB} = 1$ unit at A, With centre at A draw an arc of radius 2 units above the line. From point B draw a perpendicular line segment so that it cuts the arc at C. Join A to C. We have a right-angled ΔABC in which $m\overline{AB} = 1$ unit and $m\overline{AC} = 2$ units. By using Pythagoras theorem.

$$(m\overline{AC})^{2} = (m\overline{AB})^{2} + (m\overline{BC})^{2}$$

$$(2)^{2} = (1)^{2} + (m\overline{BC})^{2}$$

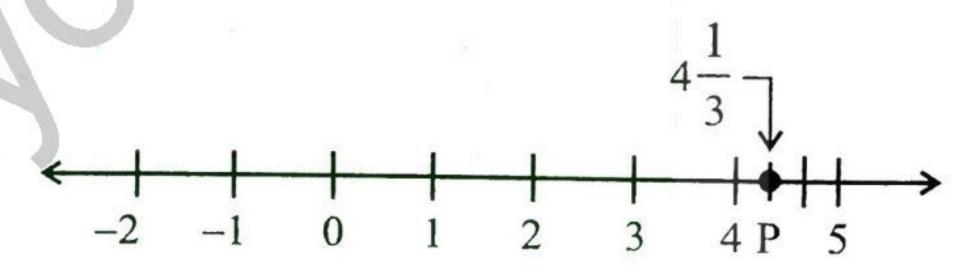

$$4 = 1 + (m\overline{BC})^{2}$$

$$4 - 1 = (m\overline{BC})^{2}$$

$$3 = (m\overline{BC})^{2}$$

$$\sqrt{(m\overline{BC})^{2}} = \sqrt{3}$$

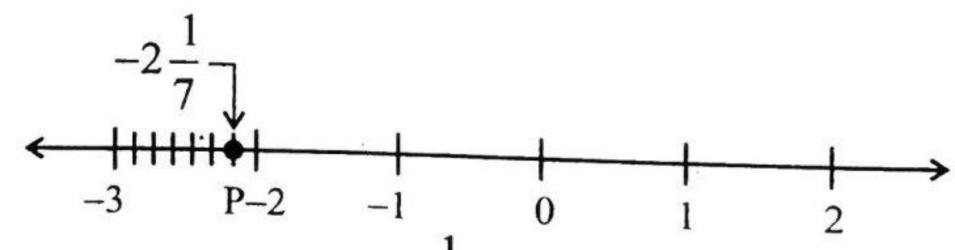
$$m\overline{BC} = \sqrt{3}$$



Now consider B is at 0.Taking B as centre, draw an arc of radius $m \overline{BC} = \sqrt{3}$, which cut the number line at P. We get point "P" representing $\sqrt{3}$ on the number line

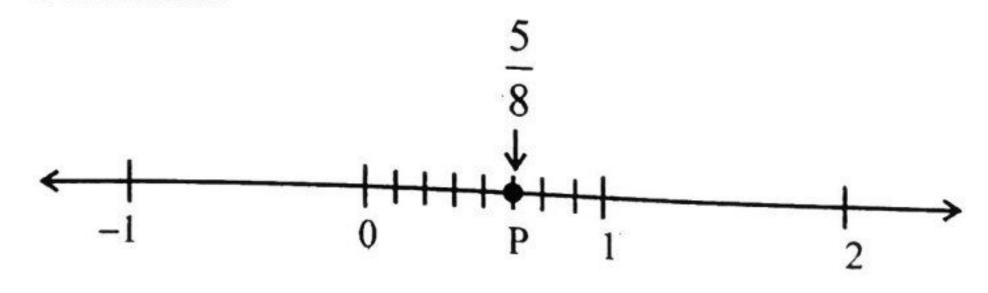
So,
$$|\overline{BP}| = \sqrt{3}$$

(iii) $4\frac{1}{3}$


Solution:

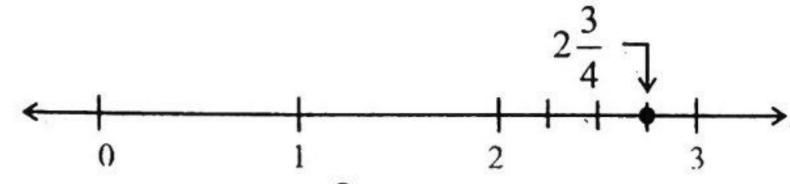
Point P represents $4\frac{1}{3}$ on the number line.

(iv)
$$-2\frac{1}{7}$$


Solution:

Point P represents $-2\frac{1}{7}$ on the number line.

$$(v) \frac{5}{8}$$


Solution:

Point P represents $\frac{5}{8}$ on the number line.

(vi)
$$2\frac{3}{4}$$

Solution:

Point P represents $2\frac{3}{4}$ on the number line.

Q.3 Express the following as a rational number $\frac{p}{q}$ where p and q are integers and

 $q \neq 0$.

(i) $0.\overline{4}$

Solution:

Let
$$x = 0.\overline{4}$$

$$x = 0.4444...$$
 (i)

Multiplying both sides by "10", we get

$$10x = 10 (0.4444...)$$

$$10x = 4.444...$$
 (ii)

Subtracting eq.(i) from (ii)

$$10x - x = (4.444...) - (0.4444...)$$

$$9 x = 4$$

$$x = \frac{4}{9}$$

$$\Rightarrow 0.\overline{4} = \frac{4}{9}$$

(ii) $0.\overline{37}$

Solution:

Let
$$x = 0.\overline{37}$$

 $x = 0.3737373737...$ (i)
Multiplying both sides by "100"
 $100x = 100 (0.37373737...)$
 $100x = 37.373737...$ (ii)

Subtracting eq.(i) from (ii)

$$100x - x = (37.373737...) - (0.37373737...)$$

$$99x = 37$$

$$x = \frac{37}{99}$$

$$\Rightarrow 0.\overline{37} = \frac{37}{99}$$

(iii) $0.\overline{21}$

Solution:

Let
$$x = 0.\overline{21}$$

$$x = 0.21212121...$$
 (i)

Multiplying both sides by "100"

$$100x = 100 (0.21212121...)$$

$$100x = 21.212121...$$
 (ii)

Subtracting eq.(i) from (ii)

$$100x - x = (21.212121...) - (0..21212121...)$$

$$99x = 21$$

$$x = \frac{21}{99} = \frac{7}{33}$$

$$\Rightarrow 0.\overline{21} = \frac{7}{33}$$

Q.4 Name the property used in the following. Solution:

Sr. No.		Property Name
(i)	(a+4)+b=a+(4+b)	Associative property w.r.t addition
(ii)	$\sqrt{2} + \sqrt{3} = \sqrt{3} + \sqrt{2}$	Commutative property w.r.t addition
(iii)	x-x=0	Additive Inverse
(iv)	a(b+c) = ab + ac	Left distributive property of multiplication over addition.
(v)	16 + 0 = 16	Additive Identity
(vi)	$100 \times 1 = 100$	Multiplicative identity
(vii)	$4 \times (5 \times 8) = (4 \times 5) \times 8$	Associative property w.r.t multiplication
(viii)	$a\mathbf{b} = \mathbf{b}a$	Commutative property w.r.t multiplication.

5. Name the property used in the following:

Solution:

- (i) $-3 < -1 \Rightarrow 0 < 2$ Additive property of inequality
- (ii) If a < b then $\frac{1}{a} > \frac{1}{b}$

Reciprocal property

- (iii) If a < b then a+c < b+cAdditive property of inequality
- (iv) If ac < bc and c > 0 then a < b Cancellation property of inequality w.r.t multiplication.
- (v) If ac < bc and c < 0 then a > b Cancellation property of inequality w.r.t multiplication.
- (vi) Either a > b or a = b or a < bTrichotomy property
- 6. Insert two rational numbers between

(i)
$$\frac{1}{3}$$
 and $\frac{1}{4}$

Solution:

Two rational numbers between $\frac{1}{3}$ and $\frac{1}{4}$

Average of
$$\frac{1}{3}$$
 and $\frac{1}{4} = \left(\frac{1}{3} + \frac{1}{4}\right) \div 2$

$$= \left[\frac{4+3}{12}\right] \times \frac{1}{2}$$

$$= \frac{7}{12} \times \frac{1}{2} = \frac{7}{24}$$

Now we find average of $\frac{1}{3}$ and $\frac{7}{24}$

Average of
$$\frac{1}{3}$$
 and $\frac{7}{24} = \left(\frac{1}{3} + \frac{7}{24}\right) \div 2$

$$= \frac{8+7}{24} \times \frac{1}{2}$$

$$= \frac{15}{24} \times \frac{1}{2} = \frac{15}{48} = \frac{5}{16}$$

Thus $\frac{5}{16}$ and $\frac{7}{24}$ are two rational numbers between $\frac{1}{3}$ and $\frac{1}{4}$.

(ii) 3 and 4

Solution:

Two rational numbers between 3 and 4.

Average of 3 and
$$4 = \frac{3+4}{2} = \frac{7}{2}$$

Average of $\frac{7}{2}$ and $4 = \left(\frac{7}{2} + 4\right) \div 2$

$$= \left(\frac{7+8}{2}\right) \div \frac{2}{1}$$

$$= \frac{15}{2} \times \frac{1}{2}$$

$$= \frac{15}{4}$$

Thus $\frac{7}{2}$ and $\frac{15}{4}$ are two rational numbers between 3 and 4.

(iii)
$$\frac{3}{5}$$
 and $\frac{4}{5}$

Solution:

Two rational numbers between $\frac{3}{5}$ and $\frac{4}{5}$

Average of
$$\frac{3}{5}$$
 and $\frac{4}{5} = \left(\frac{3}{5} + \frac{4}{5}\right) \div 2$

$$= \left(\frac{3+4}{5}\right) \times \frac{1}{2}$$

$$= \frac{7}{5} \times \frac{1}{2} = \frac{7}{10}$$
Average of $\frac{7}{10}$ and $\frac{4}{5} = \left(\frac{7}{10} + \frac{4}{5}\right) \div 2$

$$= \left(\frac{7+8}{10}\right) \times \frac{1}{2}$$

$$= \frac{15}{10} \times \frac{1}{2}$$

$$= \frac{15}{20} = \frac{3}{4}$$

Thus $\frac{7}{10}$ and $\frac{3}{4}$ are two rational numbers between $\frac{3}{5}$ and $\frac{4}{5}$.