

Step Academy official

Model Town Grw PH: 03016652757

STUDENT NAME	
PAPER CODE	62859
TIME ALLOWED	180
Paper Date	25-02-2026

CLASS	New 1st Year (FSC/ICS)
SUBJECT	Physics
TOTAL MARKS	100
Paper Type	

Q1. Choose the correct answer.

17X1=17

1. A measuring tape has been graduated with a minimum scale division of 0.2 cm. The allowed reading using this tape may be:
 (A) 80.5 cm (B) 80.6 cm (C) 80.65 cm (D) 80.7 cm
2. The answer of the product (2.8723×1.8) to the appropriate number of significant figures is:
 (A) 4.59568 (B) 4.595 (C) 4.59 (D) 4.6
3. The diameter of a steel ball is measured using a Vernier Callipers and its reading is shown in the figure. (image). What is the diameter of the steel ball?
 (A) 1.30 cm (B) 1.39 cm (C) 1.40 cm (D) 1.31 cm
4. The scalar product of two vectors is maximum if they are:
 (A) Perpendicular (B) Parallel (C) At 30° (D) At 45°
5. The projectile gains its maximum height at an angle of:
 (A) 0° (B) 45° (C) 60° (D) 90°
6. SI unit of impulse is:
 (A) kg ms^{-2} (B) N m (C) N s (D) N m^2
7. A body travelling in a circle at a constant speed:
 (A) Has constant velocity (B) Has an inward radial acceleration (C) Is not accelerated (D) Has an outward radial acceleration
8. Every point of rotating rigid body has:
 (A) Same angular velocity (B) Same linear velocity (C) Same linear acceleration (D) Same linear distance
9. An astronaut is orbiting around the Earth in a large capsule. then:
 (A) He will be in a state of weightlessness with respect to capsule (B) He is freely falling toward the Earth (C) A ball projected at an angle has a straight line path as observed by him (D) All the above
10. The moment of the inertia of the body depends upon:
 (A) Mass of the body and its distribution about axis of rotation (B) Volume of the body (C) Kinetic energy of the body (D) Angular momentum of the body
11. A man inside the artificial satellite feels weightlessness because the force of attraction due to the Earth is:
 (A) Zero at the pole (B) Balanced by the force of attraction due to the moon (C) Equal to the centripetal force (D) Non-effective due to some particular design of the satellite
12. A body at rest may have:
 (A) speed (B) Velocity (C) Momentum (D) Energy
- 13.

The height above the ground of a child on a swing varies from 0.5 m at his lower point to 1.5 m at his highest point. The maximum speed of the child is approximately:

(A) 1.5 ms^{-1} (B) 4.4 ms^{-1} (C) 9.8 ms^{-1} (D) Depends upon child's mass

14. The potential at a point situated at a distance of 50cm from a charge of $50 \mu\text{C}$ is:

(A) $9 \times 10^{-4} \text{ volts}$ (B) $18 \times 10^{-4} \text{ volts}$ (C) $9 \times 10^5 \text{ volts}$ (D) $18 \times 10^4 \text{ volts}$

15. A piece of wire has resistance of 4(eq).It is doubled on itself so that its length becomes half but area of cross section is doubled. Its resistance now will be:

(A) 8Ω (B) 4Ω (C) 2Ω (D) 1Ω

16. Electrons while moving perpendicularly through a uniform magnetic field are:

(A) Deflected towards north pole (B) Deflected towards south pole (C) Deflected along circular path (D) Not deflected at all

17.

A magnet is suspended from a spring. The magnet oscillates and moves in and out of the coil connected to a galvanometer. When the magnet oscillates, the galvanometer shows:(image)

(A) Deflection to the left and to the right (B) Deflected on one side (C) No deflection (D) Deflection to the left and right, but the amplitude steadily decreases

Q2. Write short answers of the following questions. Any 8

8X2=16

1 . How many significant figures should be retained in the following?

2 . Write the dimensions of: (i) Planck's constant (ii) Angular velocity.

3 . State right hand rule for two vectors with reference to vector products?

4 . State the condition under which birds fly in air?

5 . Show that range of projectile is maximum at an angle of 45° .

6 . Describe briefly effects of air resistance on the range and maximum height of a projectile.

7 . Why is the acceleration of a body moving uniformly in a circle, directed towards the centre?

8 . A ball is just supported by a string without breaking. If it is whirled in a vertical circle, it breaks. Explain why.

9 . Mass is a measure of inertia in linear motion. What is its analogue in rotational motion? Describe briefly.

10 .

A bicycle has a K.E of 150 j. What K.E would the bicycle have if it had: (i) same mass but has speed double? (ii) three times mass and was moving with one half of the speed?

11 . Write the following numbers in significant notation: (a) 143.7 (b) 206.4×10^2

12 . State second law of motion in case of rotation.

Q3. Write short answers of the following questions. Any 8

8X2=16

1 . Differentiate between streamline and turbulent flow of a fluid.

2 . A gas is expanding adiabatically. Explain what happens to temperature and pressure of the gas.

3 . State 2nd law of thermodynamics in two different forms.

4 . Show that area under P-V graph is equal to work done.

5 . What are the quantities which affect the frequency of standing wave along a string?

6 . Give an example of stationary waves in real life.

7 . Why is it difficult to recognize beats when the frequency difference is greater than 10 Hz?Exemplify

8 . Which measurement of a wave is the most important when determining the wave's intensity?

9 . Would it be possible to use a polarizer as an analyzer? If yes, give at least two examples.

10 . What is the significance of detecting gravitational waves?

11 . What is the space-time curvature?

12 . Why standing near fast moving train is dangerous? Explain briefly.

Q4. Write short answers of the following questions. Any 6

6X2=12

1 . Suppose you follow an electric field line due to a positive point charge. Do electric field and the potential increases or decrease?

2 . Why are electric field lines useful?

3 . If a point charge q of mass m is released in a non-uniform electric field with lines pointing in the same direction, will it make a rectilinear motion?

4 . What factors affect the resistivity of a material?

5 . What is electric power?

6 . What happens to the terminal p.d when current increases?

7 . What is the condition for balance in Wheatstone bridge?

8 . What happens when Wheatstone bridge is balanced?

9 . How a galvanometer is converted into: (i) an ammeter (ii) a Voltmeter

Q5. Write detailed answers of the following questions. Any 6

6X4=24

1a . Define and explain scalar product. Write down its important characteristics.

b .

Check the homogeneity of the relation $v = \sqrt{\frac{t \times \ell}{m}}$. where v is the speed of transverse wave of a stretched string of tension T , length l and mass m .

2a . What is projectile motion? Explain.

b .

A railway wagon of mass 4×10^4 kg moving with velocity of 3 ms^{-1} collides with another wagon of mass 2×10^4 kg which is at rest. They stick together and move off together. Find their combined velocity.

3a . Define K.E and derive an expression for the same.

b . A 1200 kg car is running at a speed of 40 km h^{-1} . How much power will be expended by it to accelerate at 2 ms^{-2} .

4a . State and derive equation of continuity.

b . A tank filled with water has a hole at a depth of 5 m from the water surface. Calculate the velocity of water flowing out of the hole.

5a . How can polarized light be obtained by the method of reflection? Explain.

b .

A disc of 10cm^2 area is placed in a vertical electric field $E = 5 \times 10^5 \text{ N C}^{-1}$. If the plane of the disc makes an angle of 30° with the horizontal, determine the electric flux through the disc.