

# Step Academy official

Model Town Grw PH: 03016652757

|              |            |
|--------------|------------|
| STUDENT NAME |            |
| PAPER CODE   | 63300      |
| TIME ALLOWED | 40         |
| Paper Date   | 12-02-2026 |



|             |                        |
|-------------|------------------------|
| CLASS       | New 1st Year (FSC/ICS) |
| SUBJECT     | Chemistry              |
| TOTAL MARKS | 25                     |
| Paper Type  |                        |

## Q1. Choose the correct answer.

5X1=5

1. The geometry of sp hybridized atoms is:

(A) Linear (B) Bent (C) Trigonal planar (D) Tetrahedral

2. Molecule has a linear shape:

(A)  $\text{H}_2\text{O}$  (B)  $\text{CO}_2$  (C)  $\text{SO}_2$  (D)  $\text{O}_3$

3. Trigonal planar shape is associated with:

(A)  $\text{CH}_4$  (B)  $\text{NH}_3$  (C)  $\text{BF}_3$  (D)  $\text{PCl}_3$

4. In MOT, the total number of molecular orbitals formed from two atomic orbitals is:

(A) One (B) Two (C) Three (D) Four

5. Which of the following molecules has a central atom with  $\text{sp}^3$  hybridization and a tetrahedral electron pair geometry?

(A)  $\text{BF}_3$  (B)  $\text{SO}_2$  (C)  $\text{CCl}_4$  (D)  $\text{PCl}_5$

## Q2. Write short answers of the following questions.

5X2=10

1. What does VSEPR theory predict about molecular shape?

2. How does MOT explain the paramagnetism of  $\text{O}_2$ ?

3. Draw the Lewis (electron dot) structures for the following species: (i)  $\text{CO}$  (ii)  $\text{O}_3$  (iii)  $\text{NO}_2$

4. The bond between K and Cl is ionic but that between Si and Cl is polar covalent. Explain why

5. Which of  $\text{O}_2^{2+}$ , and  $\text{O}_2^{2-}$  would be paramagnetic? Give reason in the light of MOT.

## Q3. Write detailed answers of the following questions.

2X5=10

1.

Draw the molecular orbital diagrams of the following molecules. Calculate their bond orders. (i)  $\text{H}_2$  (ii)  $\text{He}_2$  (iii)  $\text{N}_2$  (iv)  $\text{O}_2$

2. Explain the orbital hybridization for  $\text{CH}_4$ ,  $\text{NH}_3$ ,  $\text{BF}_3$ , and  $\text{BeCl}_2$ .